2022-2023学年江苏省东台市第二联盟数学八下期末考试模拟试题含解析_第1页
2022-2023学年江苏省东台市第二联盟数学八下期末考试模拟试题含解析_第2页
2022-2023学年江苏省东台市第二联盟数学八下期末考试模拟试题含解析_第3页
2022-2023学年江苏省东台市第二联盟数学八下期末考试模拟试题含解析_第4页
2022-2023学年江苏省东台市第二联盟数学八下期末考试模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图1,四边形ABCD中,AB∥CD,∠B=90°,AC=AD.动点P从点B出发沿折线B→A→D→C方向以1单位/秒的速度匀速运动,在整个运动过程中,△BCP的面积S与运动时间t(秒)的函数图象如图2所示,则AC等于A.5 B.34 C.8 D.22.定义,当时,,当<时,;已知函数,则该函数的最大值是A. B. C. D.3.如图,在平面直角坐标系中,直线与y轴交于点B(0,4),与x轴交于点A,∠BAO=30°,将△AOB沿直线AB翻折,点O的对应点C恰好落在双曲线y=(k≠0)上,则k的值为()A.﹣8 B.﹣16 C.﹣8 D.﹣124.已知直线经过点,则直线的图象不经过第几象限()A.一 B.二 C.三 D.四5.若关于x的方程的解为正数,则m的取值范围是A.m<6 B.m>6 C.m<6且m≠0 D.m>6且m≠86.二十一世纪,纳米技术将被广泛应用,纳米是长度计量单位,1纳米=0.000000001米,则5纳米可以用科学记数法表示为()A.米 B.米 C.米 D.米7.下面各问题中给出的两个变量x,y,其中y是x的函数的是①x是正方形的边长,y是这个正方形的面积;②x是矩形的一边长,y是这个矩形的周长;③x是一个正数,y是这个正数的平方根;④x是一个正数,y是这个正数的算术平方根.A.①②③ B.①②④ C.②④ D.①④8.后面的式子中(1);(2);(3);(4);(5);(6);二次根式的个数有().A.2个 B.3个 C.4个 D.5个9.在直角坐标系中,函数与的图像大数是()A. B.C. D.10.使根式有意义的的范围是().A.x≥0 B.x≥4 C.x≥-4 D.x≤-4二、填空题(每小题3分,共24分)11.如图1,边长为a的正方形发生形变后成为边长为a的菱形,如果这个菱形的一组对边之间的距离为h,我们把的值叫做这个菱形的“形变度”.例如,当形变后的菱形是如图2形状(被对角线BD分成2个等边三角形),则这个菱形的“形变度”为2:.如图3,正方形由16个边长为1的小正方形组成,形变后成为菱形,△AEF(A、E、F是格点)同时形变为△A′E′F′,若这个菱形的“形变度”k=,则S△A′E′F′=__12.一次函数图象过点日与直线平行,则一次函数解析式__________.13.化简:的结果是________.14.如图,Rt△中,分别是的中点,平分,交于点.若,,则的长是________.15.计算·(a≥0)的结果是_________.16.如图,三个正方形中,其中两个正方形的面积分别是100,36,则字母A所代表的正方形的边长是_____.17.如图,在每个小正方形的边长为1的网格中,A,B,C,D均为格点.(Ⅰ)∠ABC的大小为_____(度);(Ⅱ)在直线AB上存在一个点E,使得点E满足∠AEC=45°,请你在给定的网格中,利用不带刻度的直尺作出∠AEC.18.如图,已知EF是△ABC的中位线,DE⊥BC交AB于点D,CD与EF交于点G,若CD⊥AC,EF=8,EG=3,则AC的长为___________.三、解答题(共66分)19.(10分)解不等式组:,并判断是否为该不等式组的解.20.(6分)菱形ABCD的对角线AC、DB相交于点O,P是射线DB上的一个动点(点P与点D,O,B都不重合),过点B,D分别向直线PC作垂线段,垂足分别为M,N,连接OM.ON.(1)如图1,当点P在线段DB上运动时,证明:OM=ON.(2)当点P在射线DB上运动到图2的位置时,(1)中的结论仍然成立.请你依据题意补全图形:并证明这个结论.(3)当∠BAD=120°时,请直接写出线段BM,DN,MN之间的数量关系.21.(6分)如图,在平面直角坐标系中,为坐标原点,矩形的顶点、,将矩形的一个角沿直线折叠,使得点落在对角线上的点处,折痕与轴交于点.(1)求线段的长度;(2)求直线所对应的函数表达式;(3)若点在线段上,在线段上是否存在点,使以为顶点的四边形是平行四边形?若存在,请求出点的坐标;若不存在,请说明理由.22.(8分)已知,在平面直角坐标系中,一次函数y=kx-3(k≠0)交x轴于点A,交y轴与点B.(1)如图1,若k=1,求线段AB的长;(2)如图2,点C与点A关于y轴对称,作射线BC;①若k=3,请写出以射线BA和射线BC所组成的图形为函数图像的函数解析式;②y轴上有一点D(0,3),连接AD、CD,请判断四边形ABCD的形状并证明;若≥9,求k的取值范围23.(8分)如图,函数y=x的图象与函数y=(x>0)的图象相交于点P(2,m).(1)求m,k的值;(2)直线y=4与函数y=x的图象相交于点A,与函数y=(x>0)的图象相交于点B,求线段AB长.24.(8分)某商场进行促销,购物满额即可获得1次抽奖机会,抽奖袋中装有红色、黄色、白色三种除颜色外都相同的小球,从袋子中摸出1个球,红色、黄色、白色分别代表一、二、三等奖.(1)若小明获得1次抽奖机会,小明中奖是事件;(填随机、必然、不可能)(2)小明观察一段时间后发现,平均每8个人中会有1人抽中一等奖,2人抽中二等奖,若袋中共有24个球,请你估算袋中白球的数量;(3)在(2)的条件下,如果在抽奖袋中减少3个白球,那么抽奖一次恰好抽中一等奖的概率是多少?请说明理由.25.(10分)解方程26.(10分)如图,在平行四边形ABCD中,点F在AD上,且AF=AB,AE平分∠BAD交BC于点E,连接EF,BF,与AE交于点O.(1)求证:四边形ABEF是菱形;(2)若四边形ABEF的周长为40,BF=10,求AE的长及四边形ABEF的面积.

参考答案一、选择题(每小题3分,共30分)1、B【解析】

根据图1和图2得当t=3时,点P到达A处,即AB=3;当S=15时,点P到达点D处,可求出BC=5,利用勾股定理即可求解.【详解】解:当t=3时,点P到达A处,即AB=3,过点A作AE⊥CD交CD于点E,则四边形ABCE为矩形,∵AC=AD,∴DE=CE=12CD∴CD=6,当S=15时,点P到达点D处,则S=12CD•BC=3×BC=15则BC=5,由勾股定理得AD=AC=32故选:B.【点睛】本题考查了动点问题的函数图象、三角形面积公式等知识,看懂函数图象是解决问题的关键.2、B【解析】

根据定义,可得只有当取得最大值,代入即可求得最大值.【详解】根据根据定义,可得取得最大值则,因此可得代入可得所以该函数的最大值为-9故选B.【点睛】本题只要考查新定义题,关键在于理解定义,是的函数的图象成倒V的形状,因此交点处取得最大值.3、D【解析】

首先过C作CD⊥y轴,垂足为D,再根据勾股定理计算CD的长,进而计算C点的坐标,在代入反比例函数的解析式中,进而计算k的值.【详解】解:过点C作CD⊥y轴,垂足为D,由折叠得:OB=BC=4,∠OAB=∠BAC=30°∴∠OBA=∠CBA=60°=∠CBD,在Rt△BCD中,∠BCD=30°,∴BD=BC=2,CD=,∴C(﹣,6)代入得:k=﹣×6=﹣故选:D.【点睛】本题主要考查求解反比例函数的解析式,关键在于构造辅助线计算CD的长度.4、B【解析】

把点p代入求出b值,再观察k>0,b<0,根据一次函数图象与k,b的关系得出答案.【详解】因为直线经过点,所以b=-3,然后把b=-3代入,得直线经过一、三、四象限,所以直线的图象不经过第二象限.故选:B【点睛】本题考查一次函数y=kx=b(k≠0)图象与k,b的关系(1)图象是过点(-,0),(0,b)的一条直线(2)当k>0,b>0时,图象过一、二、三象限;当k>0,b<0时,图象过一、三、四象限;当k<0,b>0时,图象过一、二、四象限;当k<0,b<0时,图像过二、三、四象限.5、C【解析】

原方程化为整式方程得:2﹣x﹣m=2(x﹣2),解得:x=2﹣,∵原方程的解为正数,∴2﹣>0,解得m<6,又∵x﹣2≠0,∴2﹣≠2,即m≠0.故选C.【点睛】本题主要考查分式方程与不等式,解此题的关键在于先求出方程的解,再得到m的不等式求解即可,需要注意分式方程的分母不能为0.6、C【解析】试题分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解:5纳米=5×10﹣9,故选C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.7、D【解析】

根据题意对各选项分析列出表达式,然后根据函数的定义分别判断即可得解.【详解】解:①、y=x2,y是x的函数,故①正确;②、x是矩形的一边长,y是这个矩形的周长,无法列出表达式,y不是x的函数,故②错误;③、y=±,每一个x的值对应两个y值,y不是x的函数,故③错误;

④、y=,每一个x的值对应一个y值,y是x的函数,故④正确.

故选D.【点睛】本题考查函数的概念,准确表示出各选项中的y、x的关系是解题的关键.8、B【解析】

根据二次根式的定义:一般地,我们把形如的式子叫做二次根式可得答案.【详解】解:根据二次根式的定义:(1);(3);(5)是二次根式,而(2)中被开方数-3<0,不是二次根式,(4)是立方根,不是二次根式,(6)中因,故被开方数,不是二次根式;综上只有3个是二次根式;故选B.【点睛】此题主要考查了二次根式定义,关键是掌握被开方数是非负数.9、B【解析】

根据四个选项图像可以判断过原点且k<0,,-k>0即可判断.【详解】解:A.与图像增减相反,得到k<0,所以与y轴交点大于0故错误;B.与图像增减相反,得到k<0,所以与y轴交点大于0故正确;C.与图像增减相反,为递增一次函数且不过原点,故错误;D.过原点,而图中两条直线都不过原点,故错误.故选B【点睛】此题主要考查了一次函数图像的性质,熟记k>0,y随x的增大而增大;k<0,y随x的增大而减小;常数项为0,函数过原点.10、C【解析】

直接利用二次根式有意义的条件分析得出答案.【详解】使根式有意义,则4+x≥0,解得:x≥-4,故x的范围是:x≥-4,故选C.【点睛】此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.二、填空题(每小题3分,共24分)11、【解析】

求出形变前正方形的面积,形变后菱形的面积,两面积之比=菱形的“形变度”,求△AEF的面积,根据两面积之比=菱形的“形变度”,即可解答.【详解】如图,在图2中,形变前正方形的面积为:a2,形变后的菱形的面积为:∴菱形形变前的面积与形变后的面积之比:∵这个菱形的“形变度”为2:,∴菱形形变前的面积与形变后的面积之比=这个菱形的“形变度”,∵若这个菱形的“形变度”k=,∴即∴S△A′E′F′=.故答案为:.【点睛】考查菱形的性质,读懂题目中菱形的“形变度”的概念是解题的关键.12、【解析】

设一次函数解析式为y=kx+b,先把(0,-1)代入得b=-1,再利用两直线平行的问题得到k=-3,即可得到一次函数解析式.【详解】解:设一次函数解析式为y=kx+b,

把(0,-1)代入得b=-1,

∵直线y=kx+b与直线y=1-3x平行,

∴k=-3,

∴一次函数解析式为y=-3x-1.

故答案为:y=-3x-1.【点睛】本题考查两直线相交或平行的问题:若两条直线是平行的关系,那么它们的自变量系数相同,即k值相同.13、-2【解析】

化简二次根式并去括号即可.【详解】解:故答案为:-2【点睛】本题考查了二次根式的混合运算,计算较为简单,熟练掌握二次根式的化简是解题的关键.14、1;【解析】

依据题意,DE是△ABC的中位线,则DE=5,根据平分线和角平分线的性质,易证△BDF是等腰三角形,BD=DF,D是BC中点,DF=,由EF=DE-DF,即可解出EF.【详解】∵D、E点是AC和BC的中点,则DE是中位线,∴DE∥AB,且DE=AB=5∴∠ABF=∠BFD又BF平分∠ABC,∴∠ABF=∠FBD∴∠BFD=∠FBD∴△FDB是等腰三角形∴DF=BD又∵D是BC中点,∴BD=3∴DF=3∴EF=DE-DF=5-3=1故本题答案为1.【点睛】本题考查了平分线的性质、角平分线的性质、等腰三角形的判定及性质以及中位线的性质,熟练掌握相关知识点事解决本题的关键.15、4a【解析】【分析】根据二次根式乘法法则进行计算即可得.【详解】===4a,故答案为4a.【点睛】本题考查了二次根式的乘法,熟练掌握二次根式乘法法则是解题的关键.16、1【解析】

根据正方形的性质可得出面积为100、36的正方形的边长,再利用勾股定理即可求出字母A所代表的正方形的边长,此题得解.【详解】面积是100的正方形的边长为10,面积是36的正方形的边长为6,∴字母A所代表的正方形的边长==1.故答案为:1.【点睛】本题考查了勾股定理以及正方形的性质,牢记“在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方”是解题的关键.17、90.【解析】

(Ⅰ)如图,根据△ABM是等腰直角三角形,即可解决问题;(Ⅱ)构造正方形BCDE即可.【详解】(Ⅰ)如图,∵△ABM是等腰直角三角形,∴∠ABM=90°(Ⅱ)构造正方形BCDE,∠AEC即为所求;故答案为90【点睛】本题考查作图-应用与设计,解题的关键是寻找特殊三角形或特殊四边形解决问题18、1【解析】

由三角形中位线定理得出AB=2EF=16,EF∥AB,AF=CF,CE=BE,证出GE是△BCD的中位线,得出BD=2EG=6,AD=AB-BD=10,由线段垂直平分线的性质得出CD=BD=6,再由勾股定理即可求出AC的长.【详解】∵EF是△ABC的中位线,∴AB=2EF=16,EF∥AB,AF=CF,CE=BE,∴G是CD的中点,∴GE是△BCD的中位线,∴BD=2EG=6,∴AD=AB-BD=10,∵DE⊥BC,CE=BE,∴CD=BD=6,∵CD⊥AC,∴∠ACD=90°,∴AC=;故答案为:1.【点睛】本题考查了三角形中位线定理、线段垂直平分线的性质、勾股定理等知识;熟练掌握三角形中位线定理,求出CD=BD是解题的关键.三、解答题(共66分)19、,是该不等式组的解【解析】

先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可.【详解】解:由不等式①得:由不等式②得:∴不等式组的解集为:∵,∴是该不等式组的解.【点睛】本题考查的是解一元一次不等式组,以及不等式组的解,解题的关键是熟练掌握解一元一次不等式组的步骤和方法.20、(1)证明见解析;(2)补全图形如图,证明见解析;(3)MN=(BM+ND).【解析】

(1)延长NO交BM交点为F.根据题意,先证明△BOF≌△DON,得到NO=FO,最后结合题意,得到MO=NO=FO.(2)延长MO交ND的延长线于F.根据题意及图像,先证明△BOM≌△FOD,得到MO=FO,再由FN⊥MN,OF=OM,得到NO=OM=OF.(3)根据题意,先证明B,M,C,O四点共圆,得到∠FMN=∠OBC=30°,再由FN⊥MN,得到MN=FN=(BM+DN).【详解】(1)延长NO交BM交点为F,如图∵四边形ABCD是菱形∴AC⊥BD,BO=DO∵DN⊥MN,BM⊥MN∴BM∥DN∴∠DBM=∠BDN,且BO=DO,∠BOF=∠DON∴△BOF≌△DON∴NO=FO,∵BM⊥MN,NO=FO∴MO=NO=FO(2)如图:延长MO交ND的延长线于F∵BM⊥PC,DN⊥PC∴BM∥DN∴∠F=∠BMO∵BO=OD,∠F=∠BMO,∠BOM=∠FOD∴△BOM≌△DOF∴MO=FO∵FN⊥MN,OF=OM∴NO=OM=OF(3)如图:∵∠BAD=120°,四边形ABCD是菱形,∴∠ABC=60°,AC⊥BD∵∠OBC=30°∵BM⊥PC,AC⊥BD∴B,M,C,O四点共圆∴∠FMN=∠OBC=30°∵FN⊥MN∴MN=FN=(BM+DN)【点睛】本题主要考查了全等三角形的判定定理及四点共圆的定义,熟练掌握全等三角形的判定定理及四点共圆的定义是本题解题关键.21、(1)15;(2);(3)【解析】

(1)根据勾股定理即可解决问题;(2)设AD=x,则OD=OA=AD=12-x,根据轴对称的性质,DE=x,BE=AB=9,又OB=15,可得OE=OB-BE=15-9=6,在Rt△OED中,根据OE2+DE2=OD2,构建方程即可解决问题;(3)过点E作EP∥BD交BC于点P,过点P作PQ∥DE交BD于点Q,则四边形DEPQ是平行四边形,再过点E作EF⊥OD于点F,想办法求出最小PE的解析式即可解决问题.【详解】解:(1)由题知:.(2)设,则,根据轴对称的性质,,,又,∴,在中,,即,解得,∴,∴点,设直线所对应的函数表达式为:,则,解得,∴直线所对应的函数表达式为:,(3)存在,过点作EP∥DB交于点,过点作PQ∥ED交于点,则四边形是平行四边形.再过点作于点,由,得,即点的纵坐标为,又点在直线:上,∴,解得,∴由于EP∥DB,所以可设直线:,∵在直线上∴,解得,∴直线:,令,则,解得,∴.【点睛】本题考查一次函数综合题、矩形的性质、平行四边形的判定和性质、勾股定理等知识,解题的关键是熟练掌握待定系数法,学会构建一次函数解决问题,属于中考压轴题.22、(1);(2);(3)四边形ABCD为菱形,-2≤k≤2且k≠1.【解析】

(1)将k=1代入解析式中求出解析式,再令x=1,求出B点坐标进而求出OB的长,再在Rt△AOB中使用勾股定理即可求解;(2)①当k=3时,求出AB的解析式,进而求出点A的坐标,再根据对称性求出C点坐标,进而求出BC的解析式,再写出自变量的取值范围即可;②先证明OB=OD,OA=OC,且AC⊥BD,即可证明四边形ABCD为菱形,进而求出其面积.【详解】解:(1)由题意知,将k=1代入y=kx-3,即直线AB的解析式为:y=x-3,令x=1,求出B点坐标为(1,-3),故OB=3,令y=1,求出A点坐标为(3,1),故OA=3,在Rt△AOB中,由勾股定理有:,故答案为:;(2)①当k=3时,直线AB的解析式为:y=3x-3,令y=1,则x=1,求出点A的坐标为(1,1),令x=1,则y=-3,求出点B的坐标为(1,-3),∵点C与点A关于y轴对称,故点C(-1,1),设直线BC的解析式为:,代入B、C两点坐标:,解得,故直线BC的解析式为:,∴以射线BA和射线BC所组成的图形为函数图像的函数解析式为:,故答案为:;②四边形ABCD为菱形,理由如下:∵点B(1,-3),点D(1,3),故OB=OD,∵点C与点A关于y轴对称,∴OA=OC,由对角线互相平分的四边形是平行四边形知,四边形ABCD为平行四边形,又∵AC⊥BD,故四边形ABCD为菱形;令y=kx-3中y=1,解得,∴A(,1),则点C(,1),则AC=,∴菱形ABCD的面积为,解得:且,故答案为:且.【点睛】本题考查的是一次函数综合运用,涉及到一次函数的性质、菱形的性质、面积的计算等,综合性强,难度适中,熟练掌握一次函数的图像和性质及菱形的性质和判定是解决本题的关键.23、(1)m=2,k=4;(2)AB=1.【解析】分析:(1)将点P(2,m)代入y=x,求出m=2,再将点P(2,2)代入y=,即可求出k的值;(2)分别求出A、B两点的坐标,即可得到线段AB的长.详解:(1)∵函数y=x的图象过点P(2,m),∴m=2,∴P(2,2),∵函数y=(x>0)的图象过点P,∴k=2×2=4;(2)将y=4代入y=x,得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论