




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数的大致图象为()A. B. C. D.2.的展开式中的系数是()A.-1152 B.48 C.1200 D.23523.函数在其定义域内可导,的图象如图所示,则导函数的图象为()A. B.C. D.4.已知函数的导函数为,且满足,则的值为()A.6 B.7 C.8 D.95.在一项调查中有两个变量x(单位:千元)和y(单位:t),如图是由这两个变量近8年来的取值数据得到的散点图,那么适宜作为y关于x的回归方程类型的是()A.y=a+bx B.y=c+d C.y=m+nx2 D.y=p+qex(q>0)6.A. B. C. D.7.点M的极坐标(4,A.(4,π3) B.(48.已知成等差数列,成等比数列,则等于()A. B. C. D.或9.已知数列是等比数列,其前项和为,,则()A. B. C.2 D.410.下列四个结论中正确的个数是(1)对于命题使得,则都有;(2)已知,则(3)已知回归直线的斜率的估计值是2,样本点的中心为(4,5),则回归直线方程为;(4)“”是“”的充分不必要条件.A.1 B.2 C.3 D.411.设S为复数集C的非空子集,若对任意,都有,则称S为封闭集.下列命题:①集合为整数,i为虚数单位)}为封闭集;②若S为封闭集,则一定有;③封闭集一定是无限集;④若S为封闭集,则满足的任意集合T也是封闭集.其中真命题的个数为()A.1 B.2 C.3 D.412.已知,,,则的最大值为()A.1 B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若是函数的极值点,则的极小值为______.14.已知复数(i为虚数单位),则复数z的模为_____.15.观察下列等式,,,,,从中可以归纳出一个一般性的等式是:__________.16.已知,则的展开式中常数项为____三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(Ⅰ)当时,恒成立,试求实数的取值范围;(Ⅱ)若的解集包含,求实数的取值范围.18.(12分)在△ABC中,角A,B,C所对的边分别为a,b,c,满足(2b﹣c)cosA=acosC.(1)求角A;(2)若,b+c=5,求△ABC的面积.19.(12分)命题:函数的两个零点分别在区间和上;命题:函数有极值.若命题,为真命题的实数的取值集合分别记为,.(1)求集合,;(2)若命题“且”为假命题,求实数的取值范围.20.(12分)某大学学生会为了调查了解该校大学生参与校健身房运动的情况,随机选取了100位大学生进行调查,调查结果统计如下:参与不参与总计男大学生30女大学生50总计45100(1)根据已知数据,把表格数据填写完整;(2)能否在犯错误的概率不超过0.005的前提下认为参与校健身房运动与性别有关?请说明理由.附:,其中.0.0500.0250.0100.0050.0013.8415.0246.6357.87910.82821.(12分)如图,在正三棱锥中,侧棱长和底边长均为,点为底面中心.(1)求正三棱锥的体积;(2)求证:.22.(10分)如图,已知四棱锥的底面是边长为2的正方形,底面,.(1)求直线与平面所成的角的大小;(2)求四棱锥的侧面积.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】分析:利用函数的解析式,判断大于时函数值的符号,以及小于时函数值的符号,对比选项排除即可.详解:当时,函数,排除选项;当时,函数,排除选项,故选B.点睛:本题通过对多个图象的选择考查函数的图象与性质,属于中档题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及时函数图象的变化趋势,利用排除法,将不合题意的选项一一排除.2、B【解析】
先把多项式化简,再用二项式定理展开式中的通项求出特定项的系数,求出对应项的系数即可.【详解】解:,的二项式定理展开式的通项公式为,的二项式定理展开式的通项公式为,所以的展开式中的系数为.故选:B.【点睛】本题主要考查了二项式定理的应用以及利用二项式展开式的通项公式求展开式中某项的系数问题,是基础题目.3、D【解析】分析:根据函数单调性、极值与导数的关系即可得到结论.详解:观察函数图象,从左到右单调性先单调递增,然后单调递减,最后单调递增.对应的导数符号为正,负,正.,选项D的图象正确.故选D.点睛:本题主要考查函数图象的识别和判断,函数单调性与导数符号的对应关系是解题关键.4、C【解析】
求出,再把代入式子,得到.【详解】因为,所以.选C.【点睛】本题考查对的理解,它是一个常数,通过构造关于的方程,求得的值.5、B【解析】散点图呈曲线,排除选项,且增长速度变慢,排除选项,故选.6、D【解析】分析:根据公式,可直接计算得详解:,故选D.点睛:复数题是每年高考的必考内容,一般以选择或填空形式出现,属简单得分题,高考中复数主要考查的内容有:复数的分类、复数的几何意义、共轭复数,复数的模及复数的乘除运算,在解决此类问题时,注意避免忽略中的负号导致出错.7、C【解析】
在点M极径不变,在极角的基础上加上π,可得出与点M关于极点对称的点的一个极坐标。【详解】设点M关于极点的对称点为M',则OM'所以点M'的一个极坐标为(4,7π6)【点睛】本题考查点的极坐标,考查具备对称性的两点极坐标之间的关系,把握极径与极角之间的关系,是解本题的关键,属于基础题。8、B【解析】试题分析:因为成等差数列,所以因为成等比数列,所以,由得,,故选B.考点:1、等差数列的性质;2、等比数列的性质.9、A【解析】
由题意,根据等比数列的通项公式和求和公式,求的公比,进而可求解,得到答案.【详解】由题意得,,,公比,则,故选A.【点睛】本题主要考查了等比数列的通项公式和求和公式的应用,其中解答中熟记等比数列的通项公式和求和公式,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.10、C【解析】
由题意,(1)中,根据全称命题与存在性命题的关系,即可判定是正确的;(2)中,根据正态分布曲线的性质,即可判定是正确的;(3)中,由回归直线方程的性质和直线的点斜式方程,即可判定是正确;(4)中,基本不等式和充要条件的判定方法,即可判定.【详解】由题意,(1)中,根据全称命题与存在性命题的关系,可知命题使得,则都有,是错误的;(2)中,已知,正态分布曲线的性质,可知其对称轴的方程为,所以是正确的;(3)中,回归直线的斜率的估计值是2,样本点的中心为(4,5),由回归直线方程的性质和直线的点斜式方程,可得回归直线方程为是正确;(4)中,当时,可得成立,当时,只需满足,所以“”是“”成立的充分不必要条件.【点睛】本题主要考查了命题的真假判定及应用,其中解答中熟记含有量词的否定、正态分布曲线的性质、回归直线方程的性质,以及基本不等式的应用等知识点的应用,逐项判定是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.11、B【解析】
由题意直接验证①的正误;令x=y可推出②是正确的;举反例集合S={0}判断③错误;S={0},T={0,1},推出﹣1不属于T,判断④错误.【详解】解:由a,b,c,d为整数,可得(a+bi)+(c+di)=(a+c)+(b+d)i∈S;(a+bi)﹣(c+di)=(a﹣c)+(b﹣d)i∈S;(a+bi)(c+di)=(ac﹣bd)+(bc+ad)i∈S;集合S={a+bi|(a,b为整数,i为虚数单位)}为封闭集,①正确;当S为封闭集时,因为x﹣y∈S,取x=y,得0∈S,②正确;对于集合S={0},显然满足所有条件,但S是有限集,③错误;取S={0},T={0,1},满足S⊆T⊆C,但由于0﹣1=﹣1不属于T,故T不是封闭集,④错误.故正确的命题是①②,故选B.【点睛】本题是新定义题,考查对封闭集概念的深刻理解,对逻辑思维能力的要求较高.12、D【解析】
直接使用基本不等式,可以求出的最大值.【详解】因为,,,所以有,当且仅当时取等号,故本题选D.【点睛】本题考查了基本不等式的应用,掌握公式的特征是解题的关键.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
求出函数的导数,利用极值点,求出a,然后判断函数的单调性,求解函数的极小值即可.【详解】,是的极值点,,即,解得,,,由,得或;由,得,在上单调递增,在上单调递减,在上单调递增,
的极小值为.
故答案为:.【点睛】本题考查了利用导数研究函数的极值,属中档题.14、【解析】
直接利用复数代数形式的四则运算化简复数z,再由复数模的公式计算得答案.【详解】,则复数z的模为.故答案为.【点睛】本题考查了复数代数形式的运算,考查了复数模的求法,是基础题.15、【解析】
通过观察前几个式子的变化规律,总结规律即可得到答案.【详解】根据题意,第一个式子从1开始,左边按顺序加有1项;第二个式子从2开始,有3项;第三个式子从3开始,有5项,于是可归纳出,第n个式子从n开始,有项,于是答案为:.【点睛】本题主要考查归纳法,意在考查学生的逻辑推理能力和数感,难度不大.16、-32【解析】n=,二项式的展开式的通项为,令=0,则r=3,展开式中常数项为(-2)3=-8×4=-32.故答案为-32.点睛:求二项展开式有关问题的常见类型及解题策略:(1)求展开式中的特定项.可依据条件写出第项,再由特定项的特点求出值即可.(2)已知展开式的某项,求特定项的系数.可由某项得出参数项,再由通项写出第项,由特定项得出值,最后求出其参数.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)(Ⅱ)【解析】
(Ⅰ)转化条件得,根据恒成立问题的解决方法即可得解;(Ⅱ)转化条件得对恒成立,根据的取值范围分类讨论去绝对值即可得解.【详解】(Ⅰ)当时,,当且仅当时等号成立,.(Ⅱ)时,恒成立,对恒成立.当时,,解得:,当时,,解得:,综上:.【点睛】本题考查了绝对值不等式的解法和绝对值三角不等式的应用,考查了恒成立问题的解决方法和分类讨论思想,属于中档题.18、(1)A.(2).【解析】
(1)利用正弦定理完成边化角,再根据在三角形中有,完成化简并计算出的值;(2)利用的值以及余弦定理求解出的值,再由面积公式即可求解出△ABC的面积.【详解】(1)在三角形ABC中,∵(2b﹣c)cosA=acosC,由正弦定理得:(2sinB﹣sinC)cosA=sinAcosC,化为:2sinBcosA=sinCcosA+sinAcosC=sin(A+C)=sinB,sinB≠0,解得cosA,,∴A.(2)由余弦定理得a2=b2+c2﹣2bccosA,∵a,b+c=5,∴13=(b+c)2﹣3cb=52﹣3bc,化为bc=4,所以三角形ABC的面积SbcsinA4.【点睛】本题考查解三角形的综合运用,难度一般.(1)解三角形的问题中,求解角的大小时,要注意正、余弦定理的选择,同时注意使用正弦定理时要注意是否满足齐次的情况;(2)注意解三角形时的隐含条件的使用.19、(1),或;(2)或【解析】
(1)通过函数的零点,求解的范围;利用函数的极值求出的范围,即可.(2)利用复合函数的真假推出两个命题的真假关系,然后求解即可.【详解】(1)命题:函数的两个零点分别在区间和上;可得:,解得命题:函数有极值,由2个不相等的实数根,所以,可得或.命题,为真命题的实数的取值集合分别记为,.所以集合,或;(2)命题“且”为假命题,可知两个命题至少1个是假命题,当“且”为真命题时,实数的取值范围为集合,“且”为假命题时,实数的取值范围为或.【点睛】本题考查命题的真假的判断与应用,函数的零点以及函数的导数的应用,考查计算能力.20、(1)见解析(2)能在犯错误的概率不超过0.005的前提下认为参与校健身房运动与性别有关【解析】
(1)根据表格内的数据计算即可.(2)将表格中的数据代入公式,计算即可求出k的取值,根据参考值得出结论.【详解】解:(1)参与不参与总计男大学生302050女大学生153550总计4555100(2)因为的观测值,所以能在犯错误的概率不超过0.005的前提下认为参与校健身房运动与性别有关.【点睛】本题考查列联表和独立性检验的应用,属于基础题.21、(1);(2)证明见解析.【解析】
(1)连接,根据题意得到底面,,求出,再由三棱锥的体积公式,即可求出结果;(2)取的中点为,连接,,得到,,根据线面垂直的判定定理,得到平面,进而可得出结果.【详解】(1)连接,因为在正三棱锥中,侧棱长和底边长均为,点为底面中心,所以底面,,因此;所以正三棱锥的体积;(2)取的中点为,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 健康管理技术简介
- 出国就业担保服务合同范本与职业规划
- 亲子阅读活动承办合同
- 餐饮业跨界合作与资源共享协议书
- 出租车车辆使用权转租协议书模板
- 财务风险管理培训与内控建设合同
- 农民集中安置房建设项目可行性研究报告(模板范文)
- 城市地下空间项目场地调研与开发利用协议
- 建设工程法务培训
- 医院感染科科室介绍
- 2022年永州市中小学教师招聘笔试真题
- 环境科学与工程专业英语翻译第三版钟理
- JJF 1015-2014计量器具型式评价通用规范
- GB/T 8332-2008泡沫塑料燃烧性能试验方法水平燃烧法
- GB/T 20330-2006攻丝前钻孔用麻花钻直径
- GB/T 18033-2017无缝铜水管和铜气管
- 输血反应的发生及防治
- 湖北省仙桃市各县区乡镇行政村村庄村名居民村民委员会明细
- 中粮集团朝阳大悦城招商手册
- 钢板仓施工方案
- 北京福赛尔V6891、V6851控制器(联动型)的调试
评论
0/150
提交评论