2022-2023学年四川省乐山市数学高二第二学期期末复习检测模拟试题含解析_第1页
2022-2023学年四川省乐山市数学高二第二学期期末复习检测模拟试题含解析_第2页
2022-2023学年四川省乐山市数学高二第二学期期末复习检测模拟试题含解析_第3页
2022-2023学年四川省乐山市数学高二第二学期期末复习检测模拟试题含解析_第4页
2022-2023学年四川省乐山市数学高二第二学期期末复习检测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023高二下数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知二项式,且,则()A. B. C. D.2.已知,则的值为()A. B. C. D.3.已知函数,则“”是“在上单调递增”的(

)A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件4.已知集合A={x|x2>x,x∈R},A.{x|12≤x≤1} B.{x|12<x<2} C.{x|x≤15.若点在椭圆内,则被所平分的弦所在的直线方程是,通过类比的方法,可求得:被所平分的双曲线的弦所在的直线方程是()A. B.C. D.6.设,,则与大小关系为()A. B.C. D.7.若某程序框图如图所示,则该程序运行后输出的值是()A. B. C. D.8.若复数满足,其中为虚数单位,是的共轭复数,则复数()A. B. C.4 D.59.若偶函数在上单调递减,,,,则、、满足()A. B. C. D.10.设集合,则()A.[-4,-2] B.(-∞,1] C.[1,+∞) D.(-2,1]11.已知函数的最小正周期是,若其图像向右平移个单位后得到的函数为奇函数,则函数的图像()A.关于点对称 B.关于直线对称C.关于点对称 D.关于直线对称12.已知经过,两点的直线AB与直线l垂直,则直线l的倾斜角是()A.30° B.60° C.120° D.150°二、填空题:本题共4小题,每小题5分,共20分。13.已知公比不为1的等比数列的首项,前项和为,若是与的等差中项,则__________.14.某单位普通职工和行政人员共280人.为了解他们在“学习强国”APP平台上的学习情况,现用分层抽样的方法从所有职员中抽取容量为56的样本.已知从普通职工中抽取的人数为49,则该单位行政人员的人数为____.15.5本不同的书全部分给4个学生,每个学生至少一本,不同的分法种数为______.16.若,,,且的最小值是___.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,正方体的所有棱长都为1,求点A到平面的距离.18.(12分)已知向量m=(3sin(1)若m⋅n=1(2)记f(x)=m⋅n在ΔABC中角A,B,C的对边分别为a,b,c,且满足(2a-c)19.(12分)已知二次函数的值域为,且,.(Ⅰ)求的解析式;(Ⅱ)若函数在上是减函数,求实数的取值范围.20.(12分)已知椭圆的长轴长为4,离心率为.(Ⅰ)求椭圆的方程;(Ⅱ)当时,设,过作直线交椭圆于、两点,记椭圆的左顶点为,直线,的斜率分别为,,且,求实数的值.21.(12分)已知函数.(1)当,求函数的图象在点处的切线方程;(2)当时,求函数的单调区间.22.(10分)某校选择高一年级三个班进行为期二年的教学改革试验,为此需要为这三个班各购买某种设备1台.经市场调研,该种设备有甲乙两型产品,甲型价格是3000元/台,乙型价格是2000元/台,这两型产品使用寿命都至少是一年,甲型产品使用寿命低于2年的概率是,乙型产品使用寿命低于2年的概率是.若某班设备在试验期内使用寿命到期,则需要再购买乙型产品更换.(1)若该校购买甲型2台,乙型1台,求试验期内购买该种设备总费用恰好是10000元的概率;(2)该校有购买该种设备的两种方案,方案:购买甲型3台;方案:购买甲型2台乙型1台.若根据2年试验期内购买该设备总费用的期望值决定选择哪种方案,你认为该校应该选择哪种方案?

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】

把二项式化为,求得其展开式的通项为,求得,再令,求得,进而即可求解.【详解】由题意,二项式展开式的通项为,令,可得,即,解得,所以二项式为,则,令,即,则,所以.【点睛】本题主要考查了二项式定理的应用,其中解答中把二项式,利用二项式通项,合理赋值求解是解答的关键,着重考查了推理与运算能力,属于基础题.2、B【解析】

直接利用诱导公式以及同角三角函数基本关系式转化求解即可.【详解】解:因为,则.故选:B.【点睛】本题考查诱导公式以及同角三角函数基本关系式的应用,考查计算能力,属于基础题.3、A【解析】f′(x)=x2+a,当a≥0时,f′(x)≥0恒成立,故“a>0”是“f(x)在R上单调递增”的充分不必要条件.故选A.4、C【解析】

求出集合A中的不等式的解集确定出A,找出A,B的交集后直接取补集计算【详解】∵A=B={x|∴A∩B={x|1<x<2则CR(A∩B)={x|x≤1故选C【点睛】本题主要考查了不等式的解法及集合的交集,补集的运算,属于基础题.5、A【解析】

通过类比的方法得到直线方程是,代入数据得到答案.【详解】所平分的弦所在的直线方程是,通过类比的方法,可求得双曲线的所平分的弦所在的直线方程是代入数据,得到:故答案选A【点睛】本题考查了类比推理,意在考查学生的推理能力.6、A【解析】,选A.7、C【解析】

运行程序,当时退出程序,输出的值.【详解】运行程序,,判断否,,判断否,,……,以此类推,,判断是,退出循环,输出,故选C.【点睛】本小题主要考查计算循环结构程序框图输出的结果,属于基础题.8、D【解析】

根据复数的四则运算法则先求出复数z,再计算它的模长.【详解】解:复数z=a+bi,a、b∈R;∵2z,∴2(a+bi)﹣(a﹣bi)=,即,解得a=3,b=4,∴z=3+4i,∴|z|.故选D.【点睛】本题主要考查了复数的计算问题,要求熟练掌握复数的四则运算以及复数长度的计算公式,是基础题.9、B【解析】

由偶函数的性质得出函数在上单调递增,并比较出三个正数、、的大小关系,利用函数在区间上的单调性可得出、、的大小关系.【详解】偶函数在上单调递减,函数在上单调递增,,,,,,故选:B.【点睛】本题考查利用函数的单调性比较函数值的大小关系,解题时要利用自变量的大小关系并结合函数的单调性来比较函数值的大小,考查分析问题和解决问题的能力,属于中等题.10、B【解析】分析:先解不等式得出集合B,再由集合的运算法则计算.详解:由题意,,∴.故选B.点睛:本题考查集合的运算,解题关键是确定集合的元素,要注意集合的代表元是什么,由代表元确定如何求集合中的元素.11、D【解析】

由最小正周期为可得,平移后的函数为,利用奇偶性得到,即可得到,则,进而判断其对称性即可【详解】由题,因为最小正周期为,所以,则平移后的图像的解析式为,此时函数是奇函数,所以,则,因为,当时,,所以,令,则,即对称点为;令,则对称轴为,当时,,故选:D【点睛】本题考查图象变换后的解析式,考查正弦型三角函数的对称性12、B【解析】

首先求直线的斜率,再根据两直线垂直,求直线的斜率,以及倾斜角.【详解】,,,直线l的倾斜角是.故选B.【点睛】本题考查了两直线垂直的关系,以及倾斜角和斜率的基本问题,属于简单题型.二、填空题:本题共4小题,每小题5分,共20分。13、2017【解析】由题设可得,又,故,则,应填答案.14、1【解析】

由题意可得,抽取的行政人员数为7,再求得抽样的比列,再用7除以此比例,即得该学校的行政人员人数.【详解】由题意可得,抽取的行政人员数为56﹣49=7,抽样的比列为,故该学校的行政人员人数是71,故答案为1.【点睛】本题主要考查分层抽样的定义和方法,利用数据计算抽样比例是关键,属于基础题.15、240.【解析】

先把5本书取出两本看做一个元素,这一元素和其他的三个元素分给四个同学,相当于在四个位置全排列,根据分步乘法计数原理即可得出结果.【详解】从5本书中取出两本看做一个元素共有种不同的取法,这一元素与其他三个元素分给四个同学共有种不同的分法,根据分步乘法计数原理,共有种不同的分法.故答案为:240【点睛】本题主要考查了排列组合的综合应用,分步乘法计数原理,属于中档题.16、9【解析】

根据基本不等式的性质,结合乘“1”法求出代数式的最小值即可.【详解】∵,,,,当且仅当时“=”成立,故答案为9.【点睛】本题考查了基本不等式的性质,考查转化思想,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、【解析】

由题意首先求得三棱锥的体积,然后利用等体积法即可求得点A到平面的距离.【详解】由题意可得,三棱锥的体积,且是边长为的等边三角形,其面积,设点A到平面的距离为,利用等体积法可得:,则.即点A到平面的距离为.【点睛】本题主要考查点面距离的计算,等体积法的应用等知识,意在考查学生的转化能力和计算求解能力.18、(1)-(2)(1,【解析】试题分析:(1)∵m·n=1,即3sinx4cosx4+cos2即32sinx2+12cosx∴sin(x2+π6)=∴cos(2π3-x)=cos(x-π3)=-cos(x+π3)=-[1-2sin2(=2·(12)2-1=-1(2)∵(2a-c)cosB=bcosC,由正弦定理得(2sinA-sinC)cosB=sinBcosC.∴2sinAcosB-cosBsinC=sinBcosC,∴2sinAcosB=sin(B+C),∵A+B+C=π,∴sin(B+C)=sinA,且sinA≠0,∴cosB=12,B=π3,∴0<A<∴π6<A2+π6<π212又∵f(x)=m·n=sin(x2+π6)+∴f(A)=sin(x4+π6)+故函数f(A)的取值范围是(1,32考点:本题综合考查了向量、三角函数及正余弦定理点评:三角与向量是近几年高考的热门题型,这类题往往是先进行向量运算,再进行三角变换19、(Ⅰ)(Ⅱ)【解析】

(Ⅰ)设二次函数的解析式为,根据题意可得关于的方程组,解方程组即可求得的解析式;(Ⅱ)将的解析式代入,并构造函数,根据复合函数单调性的性质,即可得知在上为单调递增函数.根据二次函数的对称性及对数函数定义域要求即可求得的取值范围.【详解】(Ⅰ)设,由题意知.则,解得,所以的解析式为.(Ⅱ)由题意知,令,则为单调递减函数,所以在上是单调递增函数.对称轴为,所以,解得.因为,即,解得.综上:实数的取值范围为.【点睛】本题考查了二次函数的性质及解析式的求法,对数型复合函数单调性的性质应用,注意对数函数定义域的要求,属于基础题.20、(Ⅰ)或;(Ⅱ)1.【解析】

(Ⅰ)根据椭圆的焦点位置的不同进行分类讨论,利用长轴长和离心率可以求出椭圆的标准方程;(Ⅱ)由,可以确定椭圆的标准方程,过作直线可以分为二类,一类是没有斜率,一类有斜率,分别讨论,直线没有斜率时,可直接求出两点坐标,利用,可以求出点坐标,当存在斜率时,直线方程与椭圆方程联立,利用根与系数关系,结合等式,也可以求出点坐标,也就求出实数的值.【详解】(I)当时,由得,;当时,由得,.所以椭圆C的方程为或.(Ⅱ)当直线l的斜率不存在时,l的方程为,则由得两点.所以,即得(舍去)或.直线l的斜率存在时,l的方程设为设,,联立,消去y得(*),所以,,而,,化简得,即,显然,所以,解得或(舍去),对时,方程(*)的,所以,故综上得所求实数.【点睛】本题考查了椭圆的标准方程,直线与椭圆的位置关系,利用根与系数关系,结合已知等式是解题的关键,本题易忽略直线不存在斜率这种情况.21、(1);(2)见解析.【解析】

试题分析:(Ⅰ)由,求出函数的导数,分别求出,,即可求出切线方程;(Ⅱ)求出函数的导数,通过讨论的范围,即可求出函数的单调区间试题解析:(Ⅰ)当时,∴∴,;∴函教的图象在点处的切线方程为.(Ⅱ)由题知,函数的定义域为,,令,解得,,①当时,所以,在区间和上;在区间上,故函数的单调递增区间是和,单调递减区间是.②当时,恒成立,故函数的单调递增区间是.③当时,,在区间,和上;在上,故函数的单调递增区间是,,单调递减区间是④当时,,时,时,函数的单调递增区间是,单调递减区间是⑤当时,,函数的单调递增区间是,单调递减区间是,综上,①时函数的单调递增区间是和,单调递减区间是②时,函数的单调递增区间是③当时,函数的单调递增区间是,,单调递减区间是④当时,函数的单调递增区间是,单调递减区间是点睛:确定单调区间的步骤:(1)确定函数的定义域;(2)求导数,令,解此方程,求出在定义区间内的一切实根;(3)把函数的间断点(即的无定义点)的横坐标和上面的各实数根按由小到大的顺序排列起来,然后用这些点把函数的定义区间分成若干个小区间;(4)确定在各个区间内的符号,根据符号判定函数在每个相应区间内的单调性.22、(1)(2)选择B方案【解析】【试题分析】(1)由

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论