2022-2023学年安徽省淮南市第二中学数学高二下期末联考模拟试题含解析_第1页
2022-2023学年安徽省淮南市第二中学数学高二下期末联考模拟试题含解析_第2页
2022-2023学年安徽省淮南市第二中学数学高二下期末联考模拟试题含解析_第3页
2022-2023学年安徽省淮南市第二中学数学高二下期末联考模拟试题含解析_第4页
2022-2023学年安徽省淮南市第二中学数学高二下期末联考模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023高二下数学模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在5张扑克牌中有3张“红心”和2张“方块”,如果不放回地依次抽取2张牌,则在第一次抽到“红心”的条件下,第二次抽到“红心”的概率为A.625 B.310 C.32.函数,当时,有恒成立,则实数m的取值范围是()A. B. C. D.3.函数=的部分图像如图所示,则的单调递减区间为()A. B.C. D.4.若一圆柱的侧面积等于其表面积的,则该圆柱的母线长与底面半径之比为()A.1:1 B.2:1 C.3:1 D.4:15.某人有3个电子邮箱,他要发5封不同的电子邮件,则不同的发送方法有()A.8种 B.15种 C.种 D.种6.已知函数是定义在上的偶函数,并且满足,当时,,则()A. B. C. D.7.若将函数图象上所有点的横坐标伸长为原来的倍(纵坐标不变),得到函数的图象,则函数的单调递减区间为()A. B.C. D.8.若曲线:与曲线:(其中无理数…)存在公切线,则整数的最值情况为()A.最大值为2,没有最小值 B.最小值为2,没有最大值C.既没有最大值也没有最小值 D.最小值为1,最大值为29.下列函数中,满足“且”的是()A. B.C. D.10.下面给出了四种类比推理:①由实数运算中的类比得到向量运算中的;②由实数运算中的类比得到向量运算中的;③由向量的性质类比得到复数的性质;④由向量加法的几何意义类比得到复数加法的几何意义;其中结论正确的是A.①② B.③④ C.②③ D.①④11.从1,2,3,4,5中任取2个不同的数,事件“取到的2个数之和为偶数”,事件“取到的2个数均为偶数”,则()A. B. C. D.12.已知函数f(x)=2x3+ax+a.过点M(-1,0)引曲线C:y=f(x)的两条切线,这两条切线与y轴分别交于A,B两点,若|MA|=|MB|,则f(x)A.-324 B.-3二、填空题:本题共4小题,每小题5分,共20分。13.对于实数、,“若,则或”为________命题(填“真”、“假”)14.已知是虚数单位,则复数的模为______.15.在正项等比数列中,,则公比__________.16.一个袋子中装有8个球,其中2个红球,6个黑球,若从袋中拿出两个球,记下颜色,则两个球中至少有一个是红球的概率是________(用数字表示)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图在直三棱柱中,,为中点.(Ⅰ)求证:平面.(Ⅱ)若,且,求二面角的余弦值.18.(12分)设函数,曲线在点,(1))处的切线与轴垂直.(1)求的值;(2)若存在,使得,求的取值范围.19.(12分)已知关于的不等式的解集为(1)求实数的值;(2)求的最大值.20.(12分)已知椭圆的离心率为,一个焦点在直线上,直线与椭圆交于两点,其中直线的斜率为,直线的斜率为。(1)求椭圆方程;(2)若,试问⊿的面积是否为定值,若是求出这个定值,若不是请说明理由。21.(12分)已知为实数,函数,函数.(1)当时,令,求函数的极值;(2)当时,令,是否存在实数,使得对于函数定义域中的任意实数,均存在实数,有成立,若存在,求出实数的取值集合;若不存在,请说明理由.22.(10分)设,其中,,与无关.(1)若,求的值;(2)试用关于的代数式表示:;(3)设,,试比较与的大小.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】

因为是不放回抽样,故在第一次抽到“红心”时,剩下的4张扑克中有2张“红心”和2张“方块”,根据随机事件的概率计算公式,即可计算第二次抽到“红心”的概率.【详解】因为是不放回抽样,故在第一次抽到“红心”的条件下,剩下的4张扑克中有2张“红心”和2张“方块”,第二次抽取时,所有的基本事件有4个,符合“抽到红心”的基本事件有2个,则在第一次抽到“红心”的条件下,第二次抽到“红心”的概率为12故答案选D【点睛】本题给出无放回抽样模型,着重考查抽样方法的理解和随机事件的概率等知识,属于基础题.2、D【解析】

要使原式恒成立,只需m2﹣14m≤f(x)min,然后再利用导数求函数f(x)=﹣x3﹣2x2+4x的最小值即可.【详解】因为f(x)=﹣x3﹣2x2+4x,x∈[﹣3,3]所以f′(x)=﹣3x2﹣4x+4,令f′(x)=0得,因为该函数在闭区间[﹣3,3]上连续可导,且极值点处的导数为零,所以最小值一定在端点处或极值点处取得,而f(﹣3)=﹣3,f(﹣2)=﹣8,f(),f(3)=﹣33,所以该函数的最小值为﹣33,因为f(x)≥m2﹣14m恒成立,只需m2﹣14m≤f(x)min,即m2﹣14m≤﹣33,即m2﹣14m+33≤0解得3≤m≤1.故选C.【点睛】本题考查了函数最值,不等式恒成立问题,一般是转化为函数的最值问题来解决,而本题涉及到了可导函数在闭区间上的最值问题,因此我们只要从端点值和极值中找最值,注意计算的准确,是基础题3、D【解析】由五点作图知,,解得,,所以,令,解得<<,,故单调减区间为(,),,故选D.考点:三角函数图像与性质4、B【解析】

设这个圆柱的母线长为,底面半径为,根据已知条件列等式,化简可得答案.【详解】设这个圆柱的母线长为,底面半径为,则,化简得,即,故选:B【点睛】本题考查了圆柱的侧面积公式,考查了圆柱的表面积公式,属于基础题.5、C【解析】由题意得,每一封不同的电子邮件都有三种不同的投放方式,所以把封电子邮件投入个不同的邮箱,共有种不同的方法,故选C.6、D【解析】

先由题得出函数的周期,再将变量调节到范围内进行求解.【详解】因为,所令,则,所以可得,即,所以函数的周期为,则,又因为函数是定义在上的偶函数,且当时,所以故选D【点睛】本题考查函数的基本性质,包括周期性,奇偶性,解题的关键是先求出函数的周期,属于一般题.7、A【解析】

利用三角恒等变换化简的解析式,再根据的图象变换规律求得的解析式,再利用余弦函数的单调性,求得函数的单调递减区间.【详解】解:将函数的图象上所有的横坐标伸长为原来的倍(纵坐标不变),得到函数的图象,令,求得,可得的单调递减区间为.故选:A.【点睛】本题主要考查三角恒等变换,余弦函数的单调性,属于基础题.8、C【解析】分析:先根据公切线求出,再研究函数的最值得解.详解:当a≠0时,显然不满足题意.由得,由得.因为曲线:与曲线:(其中无理数…)存在公切线,设公切线与曲线切于点,与曲线切于点,则将代入得,由得,设当x<2时,,f(x)单调递减,当x>2时,,f(x)单调递增.或a<0.故答案为:C点睛:(1)本题主要考查导数的几何意义,考查利用导数求函数的最值,意在考查学生对这些基础知识的掌握能力和分析推理能力.(2)解答本题的关键是求出,再研究函数的最值得解.9、C【解析】

根据题意知,函数在上是减函数,根据选项判断即可。【详解】根据题意知,函数在上是减函数。选项A,在上是增函数,不符合;选项B,在上不单调,不符合;选项C,在上是减函数,符合;选项D,在上是增函数,不符合;综上,故选C。【点睛】本题主要考查函数单调性的定义应用以及常见函数的单调性的判断。10、D【解析】

根据向量数量积的定义、复数的运算法则来进行判断.【详解】①设与的夹角为,则,,则成立;②由于向量的数量积是一个实数,设,,所以,表示与共线的向量,表示与共线的向量,但与不一定共线,不一定成立;③设复数,则,是一个复数,所以不一定成立;④由于复数在复平面内可表示的为向量,所以,由向量加法的几何意义类比可得到复数加法的几何意义,这个类比是正确的.故选D.【点睛】本题考查数与向量、向量与复数之间的类比推理,在解这类问题时,除了考查条件的相似性之外,还要注意定义的理解,考查逻辑推理能力,属于中等题.11、B【解析】两个数之和为偶数,则这两个数可能都是偶数或都是奇数,所以。而,所以,故选B12、A【解析】

设切点的横坐标为t,利用切点与点M连线的斜率等于曲线C在切点处切线的斜率,利用导数建立有关t的方程,得出t的值,再由MA=MB得出两切线的斜率之和为零,于此得出a的值,再利用导数求出函数【详解】设切点坐标为(t,2t3+at+a),∵y'=6解得t=0或t=-32.∵|MA|=|MB|,∴y'则a=-274,f'(x)=6x2-274.当x<-324或x>【点睛】本题考查导数的几何意义,考查利用导数求函数的极值点,在处理过点作函数的切线时,一般要设切点坐标,利用切线与点连线的斜率等于切线的斜率,考查计算能力,属于中等题。二、填空题:本题共4小题,每小题5分,共20分。13、真【解析】

按反证法证明.【详解】假设命题的结论不正确,,那么结论的否定且正确,若且,则这与已知矛盾,原命题是真命题,即“若,则或”为真命题.故答案为:真【点睛】本题考查判断命题的真假,意在考查推理与证明,属于基础题型.14、【解析】

先由复数除法化简复数,再求得复数模。【详解】由题意可得,所以,填。【点睛】本题主要考查复数的除法以及复数的模,属于简单题.15、【解析】分析:利用等比数列的通项公式把等式改写成含有和的式子,联立方程组求解即可.详解:由题意得:,两式相除消去并求解得:,,.故答案为:.点睛:等比数列基本量的运算是等比数列中的一类基本问题,数列中有五个量a1,n,q,an,Sn,一般可以“知三求二”,通过列方程(组)可迎刃而解.16、【解析】

根据题意,袋中有2个红球和6个黑球,由组合数公式可得从中取出2个的情况数目,若两个球中至少有一个是红球,即一红一黑,或者两红,由分步计数原理可得其情况数目,由等可能事件的概率,计算可得答案.【详解】解:根据题意,袋中有2个红球和6个黑球,共8个球,

从中取出2个,有种情况,

两个球中至少有一个是红球,即一红一黑,或者两红的情况有种,

则两个球中至少有一个是红球的概率为,

故答案为:.【点睛】本题考查等可能事件的概率的计算,是简单题,关键在于正确应用排列、组合公式.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)见解析(Ⅱ)【解析】试题分析:(I)连结,由题意可证得,从而得为中点,所以,又由题意得得,所以得.(也可通过面面垂直证线面垂直)(II)由题意可得两两垂直,建立空间直角坐标系,求得平面和平面的法向量分别为,,由法向量夹角的余弦值可得二面角的余弦值.试题解析:(I)证明:连结,∵平面平面,平面,∴,∵为中点,∴为中点,∵,∴①,法一:由平面,平面,得,②,由①②及,所以平面.法二:由平面,平面,∴平面平面,又平面平面,所以平面.(II)解:由,得,由(I)知,又,得,∵,∴,∴两两垂直,以为原点,建立如图所示的空间直角坐标系,则,,,得,,设是平面的一个法向量,由,得,令,得,设为平面的一个法向量,由,得.令,得,∴根据题意知二面角为锐二面角,所以二面角的余弦值为.点睛:向量法求二面角大小的两种方法(1)分别求出二面角的两个面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,解题时要注意结合实际图形判断所求二面角为锐角还是钝角.(2)分别在二面角的两个半平面内找到与棱垂直且以垂足为起点的两个向量,则这两个向量的夹角的大小就是二面角的大小.18、(1);(2)【解析】

(1)求得的导数,利用导数的几何意义可得切线的斜率,解方程可得;(2)依据的导数,讨论的范围,结合单调性可得最小值,解不等式即可得到所求范围.【详解】(1),由题设知,解得.(2)解:的定义域为,由(1)知,,(i)若,则故当,使得的充要条件为,即,解得(ii)若,则,故当时,;当时,;所以在单调递减,在单调递增,所以,存在,使得的充要条件为,所以不合题意(iii)若,则时,在上单调递减,但是,∴综上所述,的取值范围是【点睛】本题主要考查导数的运用:利用导数的几何意义求切线的斜率,研究单调性和极值,意在考查学生分类讨论思想、方程思想的运用能力以及数学运算能力。19、(1);(2)4【解析】

(1)先由可得,再利用关于的不等式的解集为可得,的值;(2)先将变形为,再利用柯西不等式可得的最大值.【详解】(1)由,得则解得,(2)当且仅当,即时等号成立,故.20、(1);(2)是定值.【解析】

(1)根据离心率公式和焦点公式计算得到答案.(2)设点和直线,联立方程,根据韦达定理得到根与系数关系,计算PQ和点到直线距离,表示出面积,根据化简得到答案.【详解】解:(1)由题意可知椭圆的一个焦点为即而所以椭圆方程为(2)设当直线的斜率存在时,设其方程为,联立椭圆方程得,则,点到直线的距离所以由化简得代入上式得若直线斜率不存在易算得综合得,三角形的面积是定值【点睛】本题考查了椭圆的方程的计算,面积的表示和定值问题,计算量较大,意在考查学生的计算能力.21、(1)的极小值为,无极大值.(2)【解析】

试题分析:(1)当时,,定义域为,由得.列表分析得的极小值为,无极大值.(2)恒成立问题及存在问题,一般利用最值进行转化:在上恒成立.由于不易求,因此再进行转化:当时,可化为,令,问题转化为:对任意恒成立;同理当时,可化为,令,问题转化为:对任意的恒成立;以下根据导函数零点情况进行讨论即可.试题解析:(1),,令,得.列表:x

0

+

极小值

所以的极小值为,无极大值.(2)当时,假设存在实数满足条件,则在上恒成立.1)当时,可化为,令,问题转化为:对任意恒成立;(*)则,,.令,则.①时,因为,故,所以函数在时单调递减,,即,从而函数在时单调递增

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论