2022-2023学年常州市重点中学数学高二下期末达标检测模拟试题含解析_第1页
2022-2023学年常州市重点中学数学高二下期末达标检测模拟试题含解析_第2页
2022-2023学年常州市重点中学数学高二下期末达标检测模拟试题含解析_第3页
2022-2023学年常州市重点中学数学高二下期末达标检测模拟试题含解析_第4页
2022-2023学年常州市重点中学数学高二下期末达标检测模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023高二下数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在各项都为正数的等差数列{an}中,若a1+a2+…+a10=30,则a5•a6的最大值等于()A.3B.6C.9D.362.下列四个命题中真命题是()A.同垂直于一直线的两条直线互相平行B.底面各边相等,侧面都是矩形的四棱柱是正四棱柱C.过空间任一点与两条异面直线都垂直的直线有且只有一条D.过球面上任意两点的大圆有且只有一个3.若对于任意的实数,有,则的值为()A. B. C. D.4.曲线在处的切线的倾斜角是()A. B. C. D.5.由曲线,围成的封闭图形的面积为()A. B. C. D.6.在等比数列中,已知,则的值为()A. B. C. D.7.已知椭圆,点在椭圆上且在第四象限,为左顶点,为上顶点,交轴于点,交轴于点,则面积的最大值为()A. B. C. D.8.如表提供了某厂节能降耗技术改造后在生产A产品过程中记录的产品(吨)与相应的生产能耗(吨)的几组对应数据,根据表中提供的数据,求出关于的线性回归方程为,那么表中的值为()A.4.5 B.3.75 C.4 D.4.19.某物体的位移(米)与时间(秒)的关系为,则该物体在时的瞬时速度是()A.米/秒 B.米/秒 C.米/秒 D.米/秒10.已知满足约束条件,若的最大值为()A.6 B. C.5 D.11.如图所示十字路口来往的车辆,如果不允许回头,共有不同的行车路线有()A.24种 B.16种 C.12种 D.10种12.已知两个随机变量X,Y满足X+2Y=4,且X~N1,  A.32,2 B.12,1 C.32,1 D.二、填空题:本题共4小题,每小题5分,共20分。13.若复数满足,其中是虚数单位,则的实部为______.14.在中,,,分别是角,,所对的边,且,则的最大值为_________.15.函数是上的单调递增函数,则的取值范围是______.16.(x-1三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)夏天喝冷饮料已成为年轻人的时尚.某饮品店购进某种品牌冷饮料若干瓶,再保鲜.(Ⅰ)饮品成本由进价成本和可变成本(运输、保鲜等其它费用)组成.根据统计,“可变成本”(元)与饮品数量(瓶)有关系.与之间对应数据如下表:饮品数量(瓶)24568可变成本(元)34445依据表中的数据,用最小二乘法求出关于的线性回归方程;如果该店购入20瓶该品牌冷饮料,估计“可变成本”约为多少元?(Ⅱ)该饮品店以每瓶10元的价格购入该品牌冷饮料若干瓶,再以每瓶15元的价格卖给顾客。如果当天前8小时卖不完,则通过促销以每瓶5元的价格卖给顾客(根据经验,当天能够把剩余冷饮料都低价处理完毕,且处理完毕后,当天不再购进).该店统计了去年同期100天该饮料在每天的前8小时内的销售量(单位:瓶),制成如下表:每日前8个小时销售量(单位:瓶)15161718192021频数10151616151315若以100天记录的频率作为每日前8小时销售量发生的概率,若当天购进18瓶,求当天利润的期望值.(注:利润=销售额购入成本“可变本成”)参考公式:回归直线方程为,其中参考数据:,.18.(12分)2018年双11当天,某购物平台的销售业绩高达2135亿人民币.与此同时,相关管理部门推出了针对电商的商品和服务的评价体系,现从评价系统中选出200次成功交易,并对其评价进行统计,对商品的好评率为0.9,对服务的好评率为0.75,其中对商品和服务都做出好评的交易为140次.(1)请完成下表,并判断是否可以在犯错误概率不超过0.5%的前提下,认为商品好评与服务好评有关?对服务好评对服务不满意合计对商品好评140对商品不满意10合计200(2)若将频率视为概率,某人在该购物平台上进行的3次购物中,设对商品和服务全好评的次数为X.①求随机变量X的分布列;②求X的数学期望和方差.附:K2P(K2≥k)0.150.100.050.0250.0100.0050.001k2.0722.7063.8415.0246.6357.87910.82819.(12分)已知.(1)设,①求;②若在中,唯一的最大的数是,试求的值;(2)设,求.20.(12分)已知函数(且,e为自然对数的底数.)(1)当时,求函数在处的切线方程;(2)若函数只有一个零点,求a的值.21.(12分)党的十九大报告提出,转变政府职能,深化简政放权,创新监管方式,增强政府公信力和执行力,建设人民满意的服务型政府,某市为提高政府部门的服务水平,调查群众对两个部门服务的满意程度.现从群众对两个部门的评价(单位:分)中各随机抽取20个样本,根据评价分作出如下茎叶图:从低到高设置“不满意”,“满意”和“很满意”三个等级,在内为“不满意”,在为“满意”,在内为“很满意”.(1)根据茎叶图判断哪个部门的服务更令群众满意?并说明理由;(2)从对部门评价为“很满意”或“满意”的样本中随机抽取3个样本,记这3个样本中评价为“很满意”的样本数量为,求的分布列和期望.(3)以上述样本数据估计总体数据,现在随机邀请5名群众对两个部门的服务水平打分,则至多有1人对两个部门的评价等级相同的概率是多少?(计算结果精确到0.01)22.(10分)在平面直角坐标系中,直线的参数方程为(为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,圆C的极坐标方程为.(1)求直线的普通方程及圆C的直角坐标方程;(2)设圆C与直线交于点,若点的坐标为,求的值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】试题分析:由题设,所以,又因为等差数列各项都为正数,所以,当且仅当时等号成立,所以a5·a6的最大值等于9,故选C.考点:1、等差数列;2、基本不等式.2、C【解析】

通过“垂直于同一直线的两条直线的位置关系不确定”可判断A是否正确;通过“底面各边相等,侧面都是矩形的四棱柱底面不一定是正方形”可判断B是否正确;通过“两条异面直线的公垂线是唯一的,所以经过空间任一点与两条异面直线都垂直的直线有且只有一条”可判断C是否正确;通过“经过球面上任意两点的大圆有无数个”可判断D是否正确。【详解】A项:垂直于同一直线的两条直线不一定互相平行,故A错;B项:底面各边相等,侧面都是矩形的四棱柱是直四棱柱,不一定是正四棱柱,故B错;C项:两条异面直线的公垂线是唯一的,所以经过空间任一点与两条异面直线都垂直的直线有且只有一条,故C正确;D项:过球面上任意两点的大圆有无数个,故D错,故选C项。【点睛】本题考查了命题真假的判定以及解析几何的相关性质,考查了推理能力,考查了数形结合思想,属于基础题,在进行解析几何的相关性质的判断时,可以根据图像来判断。3、B【解析】试题分析:因为,所以,故选择B.考点:二项式定理.4、B【解析】分析:先求导数,再根据导数几何意义得斜率,最后得倾斜角.详解:因为,所以所以曲线在处的切线的斜率为因此倾斜角是,选B.点睛:利用导数的几何意义解题,主要是利用导数、切点坐标、切线斜率之间的关系来进行转化.5、C【解析】围成的封闭图形的面积为,选C.6、D【解析】

根据数列是等比数列得到公比,再由数列的通项公式得到结果.【详解】因为数列是等比数列,故得到进而得到,则故答案为:D.【点睛】这个题目考查了等比数列的通项的求法,是简单题.7、C【解析】

若设,其中,则,求出直线,的方程,从而可得,两点的坐标,表示的面积,设出点处的切线方程,与椭圆方程联立成方程组,消元后判别式等于零,求出点的坐标可得答案.【详解】解:由题意得,设,其中,则,所以直线为,直线为,可得,所以,所以,设处的切线方程为由,得,,解得,此时方程组的解为,即点时,面积取最大值故选:C【点睛】此题考查了椭圆的性质,三角形面积计算公式,考查了推理能力与计算能力,属于难题.8、C【解析】

根据回归直线必过,求出代入回归直线可构造出方程求得结果.【详解】由数据表可知:,由回归直线可知:,即:,解得:本题正确选项:【点睛】本题考查利用回归直线求解实际数据点的问题,关键是能够明确回归直线必过点,属于基础题.9、B【解析】

根据导数的物理意义,求导后代入即可.【详解】由得:当时,即该物体在时的瞬时速度为:米/秒本题正确结果:【点睛】本题考查导数的物理意义,属于基础题.10、A【解析】分析:首先绘制不等式组表示的平面区域,然后结合目标函数的几何意义求解最值即可.详解:绘制不等式组表示的平面区域如图所示,结合目标函数的几何意义可知目标函数在点A处取得最大值,联立直线方程:,可得点A坐标为:,据此可知目标函数的最大值为:.本题选择A选项.点睛:求线性目标函数z=ax+by(ab≠0)的最值,当b>0时,直线过可行域且在y轴上截距最大时,z值最大,在y轴截距最小时,z值最小;当b<0时,直线过可行域且在y轴上截距最大时,z值最小,在y轴上截距最小时,z值最大.11、C【解析】根据题意,车的行驶路线起点有4种,行驶方向有3种,所以行车路线共有种,故选C.12、C【解析】

先由X~N1,  22,得E(X)=1,D(X)=4,然后由【详解】由题意X~N1,  22因为X+2Y=4,所以Y=2-1所以E(Y)=2-12E(X)=故选C.【点睛】该题考查的正态分布的期望与方差,以及两个线性关系的变量的期望与方差之间的关系,属于简单题目.二、填空题:本题共4小题,每小题5分,共20分。13、3【解析】

由复数除法求得复数z,再求得复数实部.【详解】由题意可得,所以的实部为3,填3.【点睛】本题主要考查复数的除法以及复数的实部辨析,属于简单题.14、【解析】

利用正弦定理边化角化简可求得,则有,则借助正弦函数图象和性质即可求出.【详解】因为,所以,所以.所以,因为,所以当时,取得最小值.故答案为:.【点睛】本题考查正弦定理,三角函数的图象和性质,属于常考题.15、【解析】

在和分别保证对数型函数和一次函数单调递增;根据函数在上单调递增,确定分段处函数值的大小关系;综合所有要求可得结果.【详解】当时,若原函数为单调递增函数,则;当时,若原函数为单调递增函数,则,解得:;为上的单调递增函数,,解得:;综上所述:的取值范围为.故答案为:.【点睛】本题考查根据分段函数的单调性求解参数范围的问题,易错点是忽略函数在分段函数分段处函数值的大小关系,造成范围求解错误.16、-5【解析】试题分析:∵(x-12x)6的通项为,令,∴,故展开式中常数项为-考点:二项式定理.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ),可变成本”约为元;(Ⅱ)利润的期望值为元【解析】

(Ⅰ)将关于之间对应的数据代入最小二乘法公式求出与,可得出回归直线方程,再将代入回归直线方程可得出“可变成本”的值;(Ⅱ)根据利润公式分别算出当销量分别为瓶、瓶、瓶、瓶时的利润和频率,列出利润随机变量的分布列,结合分布列计算出数学期望值,即可得出答案。【详解】(Ⅰ),,,,,,所以关于的线性回归方程为:当时,,所以该店购入20瓶该品牌冷饮料,估计“可变成本”约为元;(Ⅱ)当天购进18瓶这种冷饮料,用表示当天的利润(单位:元),当销售量为15瓶时,利润,;当销售量为16瓶时,利润,;当销售量为17瓶时,利润,;当销售量为18瓶时,利润,;那么的分布列为:52.162.172.182.1的数学期望是:,所以若当天购进18瓶,则当天利润的期望值为元.【点睛】本题考查回归直线方程以及随机变量的分布列与数学期望,在求解随机变量分布列时,关键要弄清楚随机变量所服从的分布类型,掌握各分布类型的特点,考查分析问题能力与计算能力,属于中等题。18、(1)详见解析(2)①详见解析②E(X)=2110【解析】

(1)补充列联表,根据公式计算卡方值,进行判断;(2)(ⅰ)每次购物时,对商品和服务都好评的概率为710,且X的取值可以是0,1,2,3,x符合二项分布,按照二项分布的公式进行计算即可得到相应的概率值;(ⅱ)按照二项分布的期望和方差公式计算即可【详解】(1)由题意可得关于商品和服务评价的2×2列联表:对服务好评对服务不满意合计对商品好评14040180对商品不满意101020合计15050200则K2由于7.407<7.879,则不可以在犯错误概率不超过0.5%的前提下,认为商品好评与服务好评有关.(2)(ⅰ)每次购物时,对商品和服务都好评的概率为710且X的取值可以是0,1,2,3,则P(X=0)=(310P(X=2)=C32故X的分布列为X0123P27189441343(ⅱ)由于X~B(3,710),则E(X)=3×710【点睛】求解离散型随机变量的数学期望的一般步骤为:第一步是“判断取值”,即判断随机变量的所有可能取值,以及取每个值所表示的意义;第二步是“探求概率”,即利用排列组合、枚举法、概率公式(常见的有古典概型公式、几何概型公式、互斥事件的概率和公式、独立事件的概率积公式,以及对立事件的概率公式等),求出随机变量取每个值时的概率;第三步是“写分布列”,即按规范形式写出分布列,并注意用分布列的性质检验所求的分布列或某事件的概率是否正确.19、(1)①;②或;(2).【解析】

(1)根据题意,得到;①令,即可求出结果;②根据二项展开式的通项公式,先得到通项为,再由题意,得到,求解,即可得出结果;(2)先由题意,得到,进而得出,化简,再根据二项式系数之和的公式,即可求出结果.【详解】(1)因为,①令,则;②因为二项式展开式的通项为:,又在中,唯一的最大的数是,所以,即,解得,即,又,所以或;(2)因为,根据二项展开式的通项公式,可得,,所以,则.【点睛】本题主要考查二项式定理的应用,熟记二项公式定理即可,属于常考题型.20、(1)(2)【解析】

(1)代入,得,所以,求出,由直线方程的点斜式,即可得到切线方程;(2)分和两种情况,考虑函数的最小值,令最小值等于0,即可得到a的值.【详解】解:(1)当时,,,,∴切线方程为;(2),,令,得,1)当时,,x-0+极小值所以当时,有最小值,.因为函数只有一个零点,且当和时,都有,所以,即,因为当时,,所以此方程无解.2)当时,,x-0+极小值所以当时,有最小值,.因为函数只有一个零点,且当和时,都有,所以,即()(*),设(),则,令,得,当时,;当时,;所以当时,,所以方程(*)有且只有一解.综上,时函数只有一个零点.【点睛】本题主要考查在曲线上一点的切线方程的求法,以及利用导数研究含参函数的零点问题,考查学生的运算求解能力,体现了分类讨论的数学思想.21、(1)A部门,理由见解析;(2)的分布列见解析;期望为1;(3)..【解析】

(1)通过茎叶图中两部门“叶”的分布即可看出;(2)随机抽取3人,,分别求出相应的概率,即可求出的分布列和期望;(3)求出评价一次两个部门的评价等级不同和相同的概

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论