2023届湖南省浏阳市第二中学、五中、六中三校高二数学第二学期期末联考试题含解析_第1页
2023届湖南省浏阳市第二中学、五中、六中三校高二数学第二学期期末联考试题含解析_第2页
2023届湖南省浏阳市第二中学、五中、六中三校高二数学第二学期期末联考试题含解析_第3页
2023届湖南省浏阳市第二中学、五中、六中三校高二数学第二学期期末联考试题含解析_第4页
2023届湖南省浏阳市第二中学、五中、六中三校高二数学第二学期期末联考试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023高二下数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若双曲线的一条渐近线为,则实数()A. B.2 C.4 D.2.设函数f(x)是定义在R上的以3为周期的奇函数,若f(1)>1,f(2)=,则()A.a< B.a<且a≠1 C.a>且a<-1 D.-1<a<3.设函数f(x)=-,[x]表示不超过x的最大整数,则函数y=[f(x)]的值域为()A.{0} B.{-1,0}C.{-1,0,1} D.{-2,0}4.某地气象台预计,7月1日该地区下雨的概率为,刮风的概率为,既刮风又下雨的概率为,设表示下雨,表示刮风,则A. B. C. D.5.某家具厂的原材料费支出与销售量(单位:万元)之间有如下数据,根据表中提供的全部数据,用最小二乘法得出与的线性回归方程为,则为x24568y2535605575A.5 B.10 C.12 D.206.若命题“使”是假命题,则实数的取值范围为()A. B.C. D.7.设,,则A. B.C. D.8.设是一个三次函数,为其导函数.图中所示的是的图像的一部分.则的极大值与极小值分别是().A.与 B.与 C.与 D.与9.下列叙述正确的是()A.若命题“p∧q”为假命题,则命题“p∨q”是真命题B.命题“若x2=1,则x=1”的否命题为“若xC.命题“∀x∈R,2x>0”的否定是“∀xD.“α>45°”是“10.等差数列{an}的前n项和Sn,且4≤S2≤6,15≤S4≤21,则a2的取值范围为()A. B. C. D.11.下列关于回归分析的说法中,正确结论的个数为()(1)回归直线必过样本点中;(2)残差图中残差点所在的水平带状区域越宽,则回归方程的预报精度越高;(3)残差平方和越小的模型,拟合效果越好;(4)用相关指数来刻画回归效果,越大,说明模型的拟合效果越好.A.4 B.3 C.2 D.112.已知,,,则下列说法正确是()A. B.C.与的夹角为 D.二、填空题:本题共4小题,每小题5分,共20分。13.函数的单调递增区间为__________.14.若复数,则的共轭复数的虚部为_____15.已知,则__________.16.已知表示两个不同的平面,为平面内的一条直线,则“构成直二面角”是“”的______条件(填“充分不必要”、“必要不充分”、“充要”“或”“既不充分也不必要”).三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列{an+1﹣an}是首项为,公比为的等比数列,a1=1.(Ⅰ)求数列{an}的通项公式;(Ⅱ)求数列{(3n﹣1)•an}的前n项和Sn.18.(12分)长时间用手机上网严重影响着学生的健康,某校为了解A,B两班学生手机上网的时长,分别从这两个班中随机抽取6名同学进行调查,将他们平均每周手机上网时长作为样本数据,绘制成茎叶图如图所示(图中的茎表示十位数字,叶表示个位数字).如果学生平均每周手机上网的时长大于21小时,则称为“过度用网”(1)请根据样本数据,分别估计A,B两班的学生平均每周上网时长的平均值;(2)从A班的样本数据中有放回地抽取2个数据,求恰有1个数据为“过度用网”的概率;(3)从A班、B班的样本中各随机抽取2名学生的数据,记“过度用网”的学生人数为,写出的分布列和数学期望E.19.(12分)已知集合,.(1)分别求,;(2)已知集合,若,求实数a的取值集合.20.(12分)已知函数.(Ⅰ)当时,求的最大值;(Ⅱ)若对恒成立,求实数的取值范围.21.(12分)已知椭圆:的左焦点,离心率为,点为椭圆上任一点,且的最小值为.(1)求椭圆的方程;(2)若直线过椭圆的左焦点,与椭圆交于两点,且的面积为,求直线的方程.22.(10分)如图,矩形和等边三角形中,,平面平面.(1)在上找一点,使,并说明理由;(2)在(1)的条件下,求平面与平面所成锐二面角余弦值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】

根据双曲线的标准方程求出渐近线方程,根据双曲线的一条渐近线求得m的值.【详解】双曲线中,,令,得,所以;又双曲线的一条渐近线为,则,解得,所以实数.故选:C.【点睛】本题考查了利用双曲线的标准方程求渐近线方程的应用问题,是基础题.2、D【解析】

先利用函数f(x)是定义在实数集上的以3为周期的奇函数得f(2)=f(-1)=-f(1),再利用f(1)>1代入即可求a的取值范围.【详解】因为函数f(x)是定义在实数集上的以3为周期的奇函数,

所以f(2)=f(-1)=-f(1).

又因为f(1)>1,故f(2)<-1,即<-1⇒<0

解可得-1<a<.

故选:D.【点睛】本题主要考查了函数的周期性,以及函数奇偶性的性质和分式不等式的解法,属于基础题.3、B【解析】

依题意,由于,所以.当时,,当时,,故的值域为.故选B.【点睛】本小题主要考查指数函数的值域,考查新定义函数的意义,考查了分类讨论的数学思想方法.属于中档题.4、B【解析】解:因为5月1日浔阳区下雨的概率为,刮风的概率为,既刮风又下雨的概率为,设A为下雨,B为刮风,则5、B【解析】分析:先求样本中心,代入方程求解即可。详解:,,代入方程,解得,故选B点睛:回归直线方程必过样本中心。6、B【解析】

若原命题为假,则否命题为真,根据否命题求的范围.【详解】由题得,原命题的否命题是“,使”,即,解得.选B.【点睛】本题考查原命题和否命题的真假关系,属于基础题.7、B【解析】

分析:求出,得到的范围,进而可得结果.详解:.,即又即故选B.点睛:本题主要考查对数的运算和不等式,属于中档题.8、C【解析】

易知,有三个零点因为为二次函数,所以,它有两个零点由图像易知,当时,;当时,,故是极小值类似地可知,是极大值.故答案为:C9、B【解析】

结合命题知识对四个选项逐个分析,即可选出正确答案.【详解】对于选项A,“p∧q”为假命题,则p,q两个命题至少一个为假命题,若p,q两个命题都是假命题,则命题“p∨q”是假命题,故选项A错误;对于选项B,“若x2=1,则x=1”的否命题为“若x2对于选项C,命题“∀x∈R,2x>0”的否定是“∃x0∈R,对于选项D,若α=135°,则tanα<0,故“【点睛】本题考查了命题的真假的判断,考查了学生对基础知识的掌握情况.10、B【解析】

首先设公差为,由题中的条件可得和,利用待定系数法可得,结合所求的范围及不等式的性质可得.【详解】设公差为,由,得,即;同理由可得.故可设,所以有,所以有,解得,即,因为,.所以,即.故选:B.【点睛】本题主要考查不等式的性质及等差数列的运算,利用不等式求解范围时注意放缩的尺度,运算次数越少,范围越准确.11、B【解析】

利用回归分析的相关知识逐一判断即可【详解】回归直线必过样本点中,故(1)正确残差图中残差点所在的水平带状区域越窄,则回归方程的预报精度越高,故(2)错误残差平方和越小的模型,拟合效果越好,故(3)正确用相关指数来刻画回归效果,越大,说明模型的拟合效果越好,故(4)正确所以正确结论的个数为3故选:B【点睛】本题考查的是回归分析的相关知识,较简单.12、D【解析】

根据向量运算和向量夹角公式,向量模依次判断每个选项得到答案.【详解】,故,故错误;,故错误;,故,故,错误;,故,正确.故选:.【点睛】本题考查了向量数量积,向量夹角,向量模,意在考查学生的计算能力.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

先求得函数的定义域,然后根据复合函数同增异减求得函数的单调递增区间.【详解】由解得或,由于在其定义域上递减,而在时递减,故的单调递增区间为.【点睛】本小题主要考查复合函数单调区间的求法,考查对数函数定义域的求法,属于基础题.14、7【解析】

利用复数乘法运算化简为的形式,由此求得共轭复数,进而求得共轭复数的虚部.【详解】,,故虚部为.【点睛】本小题主要考查复数乘法运算,考查共轭复数的概念,考查复数虚部的知识.15、180【解析】,,,故答案为.【方法点晴】本题主要考查二项展开式定理的通项与系数,属于中档题.二项展开式定理的问题也是高考命题热点之一,关于二项式定理的命题方向比较明确,主要从以下几个方面命题:(1)考查二项展开式的通项公式;(可以考查某一项,也可考查某一项的系数)(2)考查各项系数和和各项的二项式系数和;(3)二项展开式定理的应用.16、必要不充分【解析】

根据直二面角的定义、面面垂直的判定理、充分性、必要性的定义可以直接判断.【详解】构成直二面角,说明平面互相垂直,但是不一定成立,比如这两个相交平面的交线显然是平面内的一条直线,它就不垂直于平面;当时,为平面内的一条直线,由面面垂直的判定定理可知:互相垂直,因此构成直二面角,故由可以推出构成直二面角,故“构成直二面角”是“”的必要不充分条件.故答案为:必要不充分【点睛】本题考查了必要不充分条件的判断,考查了面面垂直的判定定理.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)an=;(Ⅱ)Snn(3n+1)+5﹣(3n+5)•()n.【解析】

(Ⅰ)先求{an+1﹣an}的通项公式,再利用迭代法可得通项公式;(Ⅱ)根据通项公式的特点,利用分组和错位相减法进行求和.【详解】(Ⅰ)数列{an+1﹣an}是首项为,公比为的等比数列,a1=1,可得an+1﹣an•()n﹣1=()n+1,,即有an=a1+(a2﹣a1)+…+(an﹣an﹣1)=1()n;所以.(Ⅱ)(3n﹣1)•an(3n﹣1)﹣(3n﹣1)•()n,前n项和Sn(2+5++3n﹣1)﹣[2×5×(3n﹣1)•()n],设Tn=2×5×(3n﹣1)•()n,Tn=2×5×(3n﹣1)•()n+1,两式相减可得Tn=1+3(()n)﹣(3n﹣1)•()n+1=1+3×(3n﹣1)•()n+1,化简可得Tn=5﹣(3n+5)•()n,则Snn(3n+1)﹣5+(3n+5)•()n.【点睛】本题主要考查数列的通项公式求法及数列求和,结合通项公式的特点选择合适的方法进行求和,侧重考查数学运算的核心素养.18、(1)19小时;22小时.(2)(3)分布列见详解;.【解析】

(1)根据平均数计算公式,分别计算两组数据的平均数即可;(2)根据二项分布的概率计算公式即可求得;(3)根据题意写出的取值范围,再根据古典概型概率计算公式求得对应概率,写出分布列,根据分布列求得期望.【详解】(1)A班样本数据的平均值为,由此估计A班学生每周平均上网时间19小时;B班样本数据的平均值为,由此估计B班学生每周平均上网时间22小时.(2)因为从A班的6个样本数据中随机抽取1个的数据,为“过度用网”的概率是,根据二项分布的概率计算公式:从A班的样本数据中有放回的抽取2个的数据,恰有1个数据为“过度用网”的概率:.(3)的可能取值为0,1,2,3,4.,,,,.的分布列是:01234P.【点睛】本题考查根据茎叶图计算数据的平均值,离散型随机变量的分布列求解以及根据分布列求解数学期望,属综合中档题.19、(1),(2)【解析】

(1)根据题干解不等式得到,,再由集合的交并补运算得到结果;(2)由(1)知,若,分C为空集和非空两种情况得到结果即可.【详解】(1)因为,即,所以,所以,因为,即,所以,所以,所以.,所以.(2)由(1)知,若,当C为空集时,.当C为非空集合时,可得.综上所述.【点睛】这个题目考查了集合的交集以及补集运算,涉及到指数不等式的运算,也涉及已知两个集合的包含关系,求参的问题;其中已知两个集合的包含关系求参问题,首先要考虑其中一个集合为空集的情况.20、(Ⅰ)1;(Ⅱ)【解析】

(Ⅰ)当时求出的单调性,根据单调性即可求出最大值.(Ⅱ)求出的单调性.当时,,单调递增;当时,,单调递减,所以,再判断出的单调性即可.【详解】(Ⅰ)当时,,定义域为..令,得.当时,,单调递增,当时,,单调递减.所以.(Ⅱ),.令,得.当时,,单调递增;当时,,单调递减,所以.依题意有,设,则,所以在上单调递增.又,故,即实数的取值范围为.【点睛】本题考查了利用函数的单调性求最值、求含参数的范围、恒成立的问题.是高考中的必考点,也是高考中的压轴题.在解答时应该仔细审题.21、(1)(2)或.【解析】

(1)设椭圆的标准方程为:1(a>b>0),由离心率为,点P为椭圆C上任意一点,且|PF

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论