2023届江苏省常熟市数学高二第二学期期末综合测试模拟试题含解析_第1页
2023届江苏省常熟市数学高二第二学期期末综合测试模拟试题含解析_第2页
2023届江苏省常熟市数学高二第二学期期末综合测试模拟试题含解析_第3页
2023届江苏省常熟市数学高二第二学期期末综合测试模拟试题含解析_第4页
2023届江苏省常熟市数学高二第二学期期末综合测试模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023高二下数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.宋元时期数学名著《算学启蒙》中有关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等,如图是源于其思想的一个程序框图,若输入的分别为12,4,则输出的等于()A.4 B.5 C.6 D.72.已知,是双曲线的左、右焦点,点关于渐近线的对称点恰好落在以为圆心,为半径的圆上,则该双曲线的离心率为()A. B. C.2 D.33.已知定义在R上的奇函数,满足,且在上是减函数,则()A. B.C. D.4.若,是第三象限的角,则()A. B. C. D.5.已知命题:“,有成立”,则命题为()A.,有成立 B.,有成立C.,有成立 D.,有成立6.已知奇函数是定义在上的减函数,且,,,则的大小关系为()A. B. C. D.7.从甲、乙等10个同学中挑选4名参加某项公益活动,要求甲、乙中至少有1人参加,则不同的挑选方法共有()(A)种(B)种(C)种(D)种8.若,,,则实数,,的大小关系为()A. B. C. D.9.由与直线围成的图形的面积是()A. B. C. D.910.已知(为虚单位),则复数在复平面上所对应的点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限11.已知函数,的图象过点,且在上单调,的图象向左平移个单位后得到的图象与原图象重合,若存在两个不相等的实数,满足,则()A. B. C. D.12.已知正三棱柱的所有顶点都在球的球面上,且该正三棱柱的底面边长为,体积为,则球的表面积为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.的展开式中的系数是.(用数字填写答案)14.参数方程(为参数,且)化为普通方程是_________;15.关于圆周率,祖冲之的贡献有二:①;②用作为约率,作为密率,其中约率与密率提出了用有理数最佳逼近实数的问题.约率可通过用连分数近似表示的方法得到,如:,舍去0.0625135,得到逼近的一个有理数为,类似地,把化为连分数形式:(m,n,k为正整数,r为0到1之间的无理数),舍去r得到逼近的一个有理数为__________.16.已知函数,若函数有两个极值点,,且,则实数的取值范围为_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知定圆:,动圆过点且与圆相切,记圆心的轨迹为.(1)求曲线的方程;(2)已知直线交圆于两点.是曲线上两点,若四边形的对角线,求四边形面积的最大值.18.(12分)已知数列满足,,.(1)求,,;(2)判断数列是否为等比数列,并说明理由.19.(12分)已知函数是定义在上的不恒为零的函数,对于任意非零实数满足,且当时,有.(Ⅰ)判断并证明的奇偶性;(Ⅱ)求证:函数在上为增函数,并求不等式的解集.20.(12分)在一个圆锥内作一个内接等边圆柱(一个底面在圆锥的底面上,且轴截面是正方形的圆柱),再在等边圆柱的上底面截得的小圆锥内做一个内接等边圆柱,这样无限的做下去.(1)证明这些等边圆柱的体积从大到小排成一个等比数列;(2)已知这些等边圆柱的体积之和为原来圆锥体积的,求最大的等边圆柱的体积与圆锥的体积之比.21.(12分)设函数.(1)讨论的单调性;(2)若存在两个极值点,且,,证明:.22.(10分)已知函数.(1)当时,求不等式的解集;(2)若不等式对任意的实数恒成立,求实数的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】

分析:本题给只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可(注意避免计算错误).详解:模拟程序的运行,可得,不满足结束循环的条件,执行循环体,;不满足结束循环的条件,执行循环体,;不满足结束循环的条件,执行循环体,;满足结束循环的条件,退出循环,输出的值为,故选A.点睛:本题主要考查程序框图的循环结构流程图,属于中档题.解决程序框图问题时一定注意以下几点:(1)不要混淆处理框和输入框;(2)注意区分程序框图是条件分支结构还是循环结构;(3)注意区分当型循环结构和直到型循环结构;(4)处理循环结构的问题时一定要正确控制循环次数;(5)要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.2、C【解析】

设点关于渐近线的对称点为点,该渐近线与交点为,由平面几何的性质可得为等边三角形,设,则有;又,可得,代入离心率即可得出结果.【详解】设点关于渐近线的对称点为点,该渐近线与交点为,所以为线段的中垂线,故,所以为等边三角形,设,则有;又,可得,所以离心率.故选:C【点睛】本题主要考查了双曲线的几何性质以及渐近线和离心率,考查了学生逻辑推理与运算求解能力.3、D【解析】

根据条件,可得函数周期为4,利用函数期性和单调性之间的关系,依次对选项进行判断,由此得到答案。【详解】因为,所以,,可得的周期为4,所以,,.又因为是奇函数且在上是减函数,所以在上是减函数,所以,即,故选D.【点睛】本题主要考查函数值的大小比较,根据条件求出函数的周期性,结合函数单调性和奇偶性之间的关系是解决本题的关键。4、B【解析】

先利用同角三角函数的基本关系计算出的值,然后利用两角和的正弦公式可计算出的值.【详解】是第三象限角,,且,因此,,故选B.【点睛】本题考查两角和的正弦公式计算三角函数值,解题时充分利用同角三角函数的基本关系进行计算,考查运算求解能力,属于基础题.5、B【解析】

特称命题的否定是全称命题。【详解】特称命题的否定是全称命题,所以,有成立的否定是,有成立,故选B.【点睛】本题考查特称命题的否定命题,属于基础题。6、C【解析】

根据对数运算性质和对数函数单调性可得,根据指数函数单调性可知;利用为减函数可知,结合为奇函数可得大小关系.【详解】,即:又是定义在上的减函数又为奇函数,即:本题正确选项:【点睛】本题考查根据指数函数、对数函数单调性,结合奇偶性比较函数值的大小关系,关键是能够通过函数得单调性,利用临界值的方式得到自变量之间的大小关系.7、C【解析】∵从10个同学中挑选4名参加某项公益活动有种不同挑选方法;从甲、乙之外的8个同学中挑选4名参加某项公益活动有种不同挑选方法;∴甲、乙中至少有1人参加,则不同的挑选方法共有种不同挑选方法故选C;【考点】此题重点考察组合的意义和组合数公式;【突破】从参加“某项”切入,选中的无区别,从而为组合问题;由“至少”从反面排除易于解决;8、A【解析】

利用幂指对函数的单调性,比较大小即可.【详解】解:,,,∴,故选:A【点睛】本题考查了指对函数的单调性及特殊点,考查函数思想,属于基础题.9、C【解析】分析:先联立方程,组成方程组,求得交点坐标,可得被积区间,再用定积分表示出y=﹣x2与直线y=2x﹣3的面积,即可求得结论.详解:由y=﹣x2与直线y=2x﹣3联立,解得y=﹣x2与直线y=2x﹣3的交点为(﹣3,﹣9)和(1,﹣1)因此,y=﹣x2与直线y=2x﹣3围成的图形的面积是S==(﹣x3﹣x2+3x)=.故答案为:C.点睛:(1)本题主要考查利用定积分的几何意义和定积分求面积,意在考查学生对这些知识的掌握水平.(2)从几何上看,如果在区间上函数连续,且函数的图像有一部分在轴上方,有一部分在轴下方,那么定积分表示轴上方的曲边梯形的面积减去下方的曲边梯形的面积.10、B【解析】

由得,再利用复数的除法法则将复数表示为一般形式,即可得出复数所表示的点所在的象限.【详解】由得,因此,复数在复平面上对应的点在第二象限,故选B.【点睛】本题考查复数的几何意义,考查复数对应的点所在的象限,解题的关键就是利用复数的四则运算将复数表示为一般形式,考查计算能力,属于基础题.11、A【解析】

由图像过点可得,由的图象向左平移个单位后得到的图象与原图象重合,可知,结合在上单调,从而得到,由此得到的解析式,结合图像,即可得到答案。【详解】因为的图象过点,则,又,所以.一方面,的图象向左平移单位后得到的图象与原函数图象重合,则,即,化简可知.另一方面,因为在上单调,所以,即,化简可知.综合两方面可知.则函数的解析式为,结合函数图形,因为,当时,,结合图象可知则,故选A.【点睛】本题主要考查正弦函数解析式的求法,以及函数图像的应用,考查学生的转化能力,属于中档题。12、C【解析】

正三棱柱的底面中心的连线的中点就是外接球的球心,求出球的半径即可求出球的表面积.【详解】由题意可知,正三棱柱的底面中心的连线的中点就是外接球的球心,底面中心到顶点的距离为,设正三棱柱的高为,由,得,∴外接球的半径为,∴外接球的表面积为:.故选C.【点睛】本题主要考查了正三棱柱的外接球的表面积的求法,找出球的球心是解题的关键,考查空间想象能力与计算能力,是中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由题意,二项式展开的通项,令,得,则的系数是.考点:1.二项式定理的展开式应用.14、【解析】

利用消去参数可得普通方程。【详解】由题意,即,又,∴所求普通方程为。故答案为:。【点睛】本题考查参数方程化为普通方程,应用消元法可得,但要注意变量的取值范围,否则会出错。15、.【解析】

利用题中的定义以及类比推理直接进行求解即可.【详解】舍去得到逼近的一个有理数为.故答案为:【点睛】本题考查了类比推理,解题的关键是理解题中的定义,属于基础题.16、【解析】

对函数求导,函数有两个极值点,,则,化简得到,利用换元法令,则,构造函数,利用导数求出,结合将参数分离出来,构造函数,即可得出.【详解】所以,令,所以令,则令,则所以在上单调递减,所以所以在上单调递减,所以令,则恒成立所以在上单调递增,即【点睛】已知函数有零点,求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式;再通过解不等式确定参数范围.(2)分离参数法:先将参数分离,转化成求函数值城问题加以解决.(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图像,然后数形结合求解三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】分析:(1)根据动圆与定圆相内切,结合椭圆的定义,即可求得动圆圆心的轨迹方程;(2)由题可知,,因圆心坐标在直线上,则直径,将问题转化为求的最大值.根据题意设直线方程为,设,与椭圆方程联立,整理得关于的一元二次方程,由韦达定理及,结合函数的单调性,由此可以求出四边形面积的最大值.详解:解:(1)依题意得:,圆的半径,点在圆内,圆内切于圆,,点的轨迹为椭圆,设其方程为则,,,轨迹的方程为:.(2)点在直线上,即直线经过圆的圆心,,故设直线方程为,设,联立消得,,且,,四边形的面积,(当且仅当时取等号),即四边形面积的最大值为.点睛:本题考查曲线的轨迹方程求法和直线与圆锥曲线位置关系,考查对角线互相垂直的四边形面积的最大值求法,解题时要认真审题,注意等价转化思想的合理运用.解决直线与圆锥曲线综合问题基本步骤为:(1)设,即设交点坐标和直线方程,注意考虑直线斜率是否存在;(2)联,即联立直线方程与圆锥曲线,消元;(3)判,即直线与圆锥曲线的位置关系可以通过判别式加以判断;(4)韦,即韦达定理,确定两根与系数的关系.(5)代,即根据已知条件,将所求问题转换到与两点坐标和直线方程相关的问题,进而求解问题.18、(1),,.(2)是首项为,公比为的等比数列;理由见解析.【解析】分析:(1)先根据递推关系式求,,;,再求,,;(2)根据等比数列定义证明为等比数列.详解:(1)由条件可得:,将代入,得,而,∴,将代入,得,∴,∴,,.(2)是首项为2,公比为3的等比数列.由条件可得:,即,又,∴是首项为2,公比为3的等比数列.点睛:证明一个数列为等比数列常用定义法与等比中项法,其他方法只用于选择、填空题中的判定;若证明某数列不是等比数列,则只要证明存在连续三项不成等比数列即可.等比数列的判定方法19、(1)见解析;(2).【解析】分析:⑴先求出,继而,令代入得⑵构造,然后利用已知代入证明详解:(Ⅰ)是偶函数由已知得,∴,,∴,即,所以是偶函数.(Ⅱ)设,则,∴所以,所以在上为增函数.因为,又是偶函数,所以有,解得∴不等式的解集为.点睛:本题证明了抽象函数的奇偶性和单调性,在解答此类题目时方法要掌握,按照基本定义来证明,先求出和的值,然后配出形式,单调性要构造,然后按照已知法则来证明。20、(1)证明见解析;(2)【解析】

(1)求出第一个等边圆柱的体积,设第个等边圆柱的底面半径为,其外接圆锥的底面半径为,高为,则其体积,进一步求得第个等边圆柱的体积,作比可得这些等边圆柱的体积从大到小排成一个等比数列;(2)由这些等边圆柱的体积之和为原来圆锥体积的可得与的关系,则答案可求.【详解】(1)证明:如图,设圆锥的底面半径为,高为,内接等边圆柱的底面半径为,则由三角形相似可得:,可得.其体积.设第个等边圆柱的底面半径为,其外接圆锥的底面半径为,高为,则其体积,再设第个等边圆柱的底面半径为,则其外接圆锥的底面半径为,高为,则第个等边圆柱

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论