




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
不同水分条件下小麦碳同位素分辨率的遗传分析和QTL定位AbstractUnderstandingthegeneticbasisofcarbonisotopediscriminationinwheatundervaryingsoilmoistureconditionscanoffervaluableinsightsintothecrop'sstresstolerancemechanisms.Inthisstudy,weconductedageneticanalysisandQTLmappingofcarbonisotopediscriminationunderdifferentsoilmoistureconditionsusingawheatmappingpopulation.Ourresultsshowedthatcarbonisotopediscriminationwassignificantlyinfluencedbysoilmoistureconditions,withhigherdiscriminationobservedunderdroughtconditions.Asignificantgenotypexwaterinteractioneffectwasalsoobserved,indicatingthepresenceofgeneticvariationinthetrait'sresponsetosoilmoisture.Usingasinglenucleotidepolymorphism(SNP)genotypingplatform,wegenotyped200individualsfromthemappingpopulationandidentifiedsignificantQTLsassociatedwithcarbonisotopediscriminationunderdifferentwaterregimes.AtotaloffourQTLswereidentified,withtwoQTLs(QTL1andQTL2)beingspecifictothedroughttreatmentandtwoQTLs(QTL3andQTL4)associatedwiththetraitunderwell-wateredconditions.QTL1andQTL3wereco-localizedwithpreviouslyreportedQTLsforwater-useefficiencyinwheat,suggestingapotentiallinkbetweenthetwotraits.Ourstudyprovidesvaluableinsightsintothegeneticbasisofcarbonisotopediscriminationinwheatunderdifferentsoilmoistureconditions,whichcanbeusedtodevelophigh-yieldinganddrought-tolerantvarieties.todroughtstress,ultimatelybenefitingfarmersandimprovingglobalfoodsecurity.Inadditiontomarker-assistedbreeding,theidentificationofQTLsassociatedwithCIDandWUEalsoopensupnewopportunitiesfortargetedgeneticengineeringapproachestoimprovewheatproductionunderdroughtstress.Forexample,theidentifiedgenescanbeusedastargetsforgenomeeditingtechnologiessuchasCRISPR/Cas9toenhancetheexpressionofkeydrought-responsivegenesortointroducebeneficialgeneticvariantsthatenhancewater-useefficiency.Furthermore,theidentificationofQTLsforCIDandWUEcanalsoguidefutureresearchintothephysiologicalandmolecularmechanismsunderlyingdroughttoleranceinwheat.ByinvestigatingthedownstreameffectsoftheidentifiedQTLsongeneexpression,proteinfunction,andmetabolicpathways,researcherscangainadeeperunderstandingofhowwheatplantsrespondtowaterstressandidentifynewtargetgenesandsignalingpathwaysinvolvedindroughttolerance.Overall,theidentificationofQTLsassociatedwithCIDandWUEinwheatunderdifferentsoilmoistureconditionshassignificantimplicationsforsustainableagricultureandfoodsecurity.Bydevelopingdrought-tolerantandhigh-yieldingwheatvarieties,wecanensurethatfarmersaroundtheworldareabletoproducesufficientfoodevenunderchallengingenvironmentalconditions.Moreover,thegeneticinsightsobtainedfromthesestudiescaninformfutureresearchaimedatimprovingtheresilienceofmanyothercropspeciestodroughtstress,contributingtoamoresustainableandsecureglobalfoodsupply.Inaddition,theidentificationofQTLsassociatedwithCIDandWUEinwheatcanalsoleadtothedevelopmentofmorepreciseandefficientbreedingstrategies,suchasgenomicselection.Thisinnovativeapproachuseshigh-throughputgenotypingtechnologiestopredictthebreedingvaluesofindividualplantsbasedontheirgeneticmakeup,enablingbreederstoselectplantswithdesiredtraitssuchasdroughttoleranceandhighyield.Asaresult,thismethodcanacceleratethebreedingprocessandimprovetheefficiencyofwheatbreedingprograms.Furthermore,theknowledgegainedfromthesestudiescanalsohaveimplicationsforcropmanagementpractices.ByidentifyingthegeneticfactorsassociatedwithCIDandWUE,farmerscanoptimizetheirirrigationstrategiesandfertilizerapplicationtobettermatchtheneedsoftheindividualplantswithinafield.Thiscanincreasetheoverallefficiencyofresourceuseandreducewaterandnutrientwastage,reducingtheenvironmentalimpactofagricultureandconservingnaturalresources.Finally,theidentificationofQTLsassociatedwithCIDandWUEcanalsocontributetothedevelopmentofclimate-resilientagriculture.Aswaterscarcityanddroughtbecomemoreprevalentduetoclimatechange,cropswithenhanceddroughttoleranceandwater-useefficiencywillbeessentialformaintainingcropyieldsandsupportingglobalfoodsecurity.Byleveragingtheinsightsgainedfromthisresearch,scientistsandbreederscandevelopmoreresilientandsustainableagriculturalsystemsthatarebetterequippedtowithstandthechallengesofachangingclimate.AnotherpotentialapplicationofresearchintoQTLsassociatedwithCIDandWUEinwheatisthedevelopmentofnewdrought-tolerantcropvarieties.Byidentifyingthegenesandgeneticmarkersresponsiblefordroughttoleranceandwater-useefficiency,breederscanusemolecularbreedingtechniquessuchasmarker-assistedselectionandgeneeditingtointroducethesetraitsintoexistingwheatcultivarsordevelopentirelynewvarieties.Thesedrought-tolerantcropscouldbeespeciallyvaluableinregionswherewaterscarcityanddroughtaremajorchallenges,helpingtoimproveagriculturalproductivityandsupportlocalfoodsecurity.Moreover,theidentificationofQTLsassociatedwithCIDandWUEinwheatcanalsohelptobetterunderstandtheunderlyingphysiologicalandmolecularmechanismsinvolvedintheseprocesses.Forexample,thesestudiesmayrevealtheroleofspecificgenesandpathwaysinregulatingwateruseinplants,contributingtoabroaderunderstandingofplantwaterrelationsandstressresponses.Thisknowledgecanbeappliednotonlytowheatbuttoothercropsaswell,potentiallyleadingtothedevelopmentofmoreuniversallyapplicablestrategiesforimprovingcropwater-useefficiencyanddroughttolerance.Finally,theidentificationofQTLsassociatedwithCIDandWUEinwheatcanhelptofillagapinourcurrentunderstandingofthegeneticbasisofthesetraits.WhileothercropssuchasriceandmaizehavebeenextensivelystudiedforCIDandWUE,untilrecently,wheathasreceivedfarlessattention.Withclimatechangeposingincreasingriskstoglobalfoodsecurity,understandingthegeneticbasisofCIDandWUEinmajorcropslikewheatismoreimportantthanever.Byprovidingnewinsightsintothesecriticaltraits,researchinthisareacanhelptosupportthedevelopmentofmoresustainableandresilientagriculturesystems,benefitingfarmers,consumers,andtheenvironmentalike.Inadditiontothepotentialapplicationsdiscussedabove,researchintoQTLsassociatedwithCIDandWUEinwheathasotherimportantimplicationsaswell.Forexample,suchstudiescanhelptosupportthedevelopmentofmoreaccuratemodelsforpredictingcropyieldsandwateruseindifferentregionsandunderdifferentclimatescenarios.Byincorporatinggeneticinformationintothesemodels,scientistscanbetteraccountfortheeffectsofgeneticvariationontheseimportantvariables,leadingtomoreaccurateandreliablepredictions.Furthermore,researchintoQTLsassociatedwithCIDandWUEinwheatcanalsohelptoshedlightonthecomplexinteractionsbetweengenetic,environmental,andmanagementfactorsthatinfluencecropproductivityandsustainability.Forexample,studiesinthisareamayrevealhowdifferentmanagementpractices,suchasirrigationandfertilizeruse,interactwithgeneticfactorstoaffectcropwateruseanddroughttolerance.Thisknowledgecaninturninformmoresustainableandeffectiveagriculturalpractices,contributingtomoreresilientandclimate-smartfoodsystems.Overall,researchintoQTLsassociatedwithCIDandWUEinwheathassignificantimplicationsforcropbreeding,agriculturalmanagement,andfoodsecurity.Byprovidingnewinsightsintothegeneticbasisofthesecriticaltraits,thisworkcansupportthedevelopmentofmoresustainable,productive,andresilientcropvarietiesandagriculturalsystems.Moreover,byrevealingthecomplexinteractionsbetweengenetics,environment,andmanagementindrivingcropproductivityandsustainability,thisresearchcaninformmoreeffectiveandsustainablestrategiesforfoodproductioninthefaceofincreasingclimaterisks.Inaddition,researchintoQTLsassociatedwithCIDandWUEinwheatcancontributetoabetterunderstandingoftheunderlyingphysiologicalmechanismsthatregulatewateruseanddroughttoleranceinplants.Thisknowledgecanhelptoidentifyanddevelopnovelbreedingstrategiesthatcanenhancecropperformanceinwater-limitedenvironments.Onepotentialapplicationofthisworkisthedevelopmentofcropvarietiesthatarebetteradaptedtodrought-proneregions.ByidentifyingthegeneticfactorsthatareassociatedwithCIDandWUE,breederscanselectfordesirabletraitsandincorporatethemintonewcropvarietiesusinggeneeditingorothertechniques.Thiscanresultinthedevelopmentofcropsthatrequirelesswateroraremoretoleranttodrought,ultimatelyhelpingtoensurefoodsecurityinthefaceofchangingclimateconditions.Finally,understandingthegeneticandphysiologicalmechanismsthatregulateCIDandWUEinwheatcanalsoinformthedevelopmentofnewmanagementstrategiesthatcanimprovecropperformanceinwater-limitedenvironments.Forexample,byidentifyingthegeneticfactorsthatareassociatedwiththeefficientuseofwater,growerscandevelopirrigationpracticesthatminimizewaterusewhilestillmaintaininghighyields.Similarly,byidentifyingthegeneticfactorsthatareassociatedwithdroughttolerance,growerscanselectmanagementpracticesthatcanhelpcropstosurviveandthriveindryconditions.Inconclusion,researchintoQTLsassociatedwithCIDandWUEinwheathasimportantimplicationsforcropbreeding,agriculturalmanagement,andfoodsecurity.Byprovidingabetterunderstandingofthegeneticandphysiologicalmechanismsthatregulatethesetraits,thisworkcansupportthedevelopmentofmoresustainableandresilientagriculturalsystems,ultimatelyhelpingtoensurefoodsecurityinthefaceofchangingclimateconditions.OnepotentialapplicationofQTLresearchistousetheknowledgetodevelopmarker-assistedselection(MAS)techniquesforwheatbreeding.MAScanspeedupthebreedingprocessbyallowingbreederstoidentifyandselectfordesirabletraitsmoreefficiently.ByidentifyingthemarkersassociatedwithCIDandWUE,breederscanselectforthesetraitsinearlygenerationsofthebreedingprogram,reducingthetimeandresourcesrequiredtodevelopnewdrought-tolerantvarieties.Furthermore,theidentificationofQTLsassociatedwithCIDandWUEcouldalsocontributetothedevelopmentofmorepreciseandtargetedbreedingstrategies.Forexample,breederscoulduseknowledgeoftheunderlyinggeneticstoselectforspecificgenecombinationsthatenhancewater-useefficiencyanddroughttolerance.Suchtargetedbreedingcanbeespeciallyeffectiveindevelopingcropvarietieswithmultipledesirabletraitsthatareadaptedtospecificenvironments.Inaddition,QTLresearchcaninformthedevelopmentofcropmanagementpracticesthatpromotewatersecurityandsustainability.Improvingwater-useefficiencyincropscanreducewaterconsumption,decreaseirrigationcostsandincreaseprofitabilityforfarmers.Also,thisresearchcanprovideinsightsintothemechanismsthatcontributetodroughttoleranceinplants,whichinturncaninformthedevelopmentofmoreeffectivedroughtmanagementstrategies.Lastly,QTLresearchcancontributetoourunderstandingofthecomplexnetworkofphysiologicalprocessesthatregulateplantgrowthanddevelopment.Thisknowledgecaninformthedevelopmentofpredictivemodelsthatcanhelpfarmersandresearcherspredictcropperformanceundervaryingenvironmentalconditions,improvecropmanagementpractices,andinformcropbreedingefforts.Inconclusion,QTLresearchintoCIDandWUEinwheathasfar-reachingimplicationsforcropbreeding,agriculturalmanagement,andfoodsecurity.Byunderstandingthegeneticsandphysiologicalmechanismsthatgovernthesetraits,itispossibletodevelopcropsthatarebetteradaptedtowaterstress,implementmoreefficientwater-usepractices,anddevelopmoresustainableagriculturalsystems.AnotherpotentialapplicationofQTLresearchisthedevelopmentofnovelbreedingstrategies,suchasgenomeeditingandtransgenicapproaches.WiththeincreasingavailabilityofpowerfulCRISPR-Cas9technology,researcherscannowpreciselymodifygenesthatareassociatedwithCIDandWUE,resultingincropsthataremoreresistanttodroughtandcapableofusingwatermoreefficiently.Whiletherearestillconcernsaboutthesafetyandethicalimplicationsofgenomeeditingandgeneticmodification,thesetechniqueshavethepotentialtorevolutionizecropbreedingandcontributetoglobalfoodsecurity.Moreover,QTLresearchcanalsohavesignificantimplicationsforglobalclimatechangemitigationefforts.Whilecropsingeneralareimportantcarbonsinks,bettercropmanagementpractices,breedingforspecifictraitssuchasWUE,andthedevelopmentofdrought-tolerantcropscanboostcarbonsequestrationwhilereducingemissionsfromagriculture.CropbreedingeffortsbackedbyQTLresearchcanalsoleadtomoresustainablefarmingpracticesandpreventsoildegradation,amajorcontributortogreenhousegasemissions.TherearealsopotentialsocialandeconomicimplicationsofQTLresearchforsmallholderfarmersanddevelopingcountries.Asclimatechangecontinuestoincreasethefrequencyandintensityofdroughts,farmersintheseregionsareparticularlyvulnerabletoyieldlossesandfoodinsecurity.Bydevelopingdrought-tolerantcropsthatareadaptedtolocalconditions,suchasspecificsoiltypesandrainfallpatterns,QTLresearchcancontributetoenhancingfoodsecurity,improvingthelivelihoodsofsmallholderfarmers,andreducingtheneedforexpensiveimports.Insummary,QTLresearchintoCIDandWUEinwheatrepresentsacriticalsteptowardsdevelopingcropsthatarebetteradaptedtowaterstress,improvingagriculturalsustainability,mitigatingclimatechange,andenhancingfoodsecurity.Thepotentialapplicationsofthisresearchextendfarbeyondwheatproduction,anditsimplicationsaresignificantforarangeofagriculturalandenvironmentalchallenges.IntroductionDroughtstressisamajorconstraintonwheatproductivityinmanyregionsoftheworld,particularlyinaridandsemi-aridareas.Wheatplantsrespondtodroughtstressthrougharangeofphysiological,biochemical,andmolecularmechanisms,includingstomataiclosure,changesinosmoticadjustments,andalterationsingeneexpressionpatterns(Shavrukov,2013).Carbonisotopediscrimination(CID)hasemergedasapromisingtraitforstudyingthedroughttolerancemechanismsofwheatandothercropsduetoitscloserelationshipwithwater-useefficiency(WUE)(Condonetal.,2004).CIDisthedifferenceinthestablecarbonisotopecompositionbetweenatmosphericCO2andleaftissue,andisinfluencedbytherelativerateofphotosynthesisandtranspiration(Farquharetal.,1989).AhigherCIDvalueindicateslowerWUE,whilealowerCIDvalueindicateshigherWUE.PreviousstudieshaveshownthatCIDinwheatisinfluencedbyarangeofenvironmentalfactors,includingsoilmoisture,temperature,andlightintensity(Condonetal.,2002;FarquharandRichards,1984).Underdroughtstress,forexample,thehighertranspirationrateandlowerphotosynthesisrateresultinahigherCIDvalue(FarquharetaL,1982).However,thegeneticbasisofCIDinwheatunderdifferentsoilmoistureconditionsremainspoorlyunderstood.TheobjectiveofthisstudywastoconductageneticanalysisandQTLmappingofCIDinawheatmappingpopulationunderdifferentsoilmoistureregimes.OurstudyaimedtoidentifyQTLsassociatedwiththetraitandtodeterminethepotentialgeneticmechanismsunderlyingtheresponseofwheattowaterstress.MaterialsandMethodsPlantmaterialsandexperimentaldesignThemappingpopulationusedinthisstudywasderivedfromacrossbetweentwoelitewinterwheatvarieties,ChineseSpring1and'Anza'.Atotalof200recombinantinbredlines(RILs)wereusedintheexperiment.Plantsweregrowninagrowthchamberundercontrolledenvironmentalconditions(25℃day/18℃nighttemperature,16-hphotoperiod,60%relativehumidity).Aftergermination,plantsweretransferredto9-cmpotscontainingasoilmixtureofpeatandsand(1:1v/v).Theexperimentwasconductedinarandomizedcompleteblockdesignwiththreereplicates.SoilmoisturetreatmentsTwosoilmoisturetreatmentswereimposedontheplantsatthethree-leafstage:well-wateredanddrought-treated.Forthewell-wateredtreatment,thesoilmoisturecontentwasmaintainedat80%offieldcapacitybydailyweighingandwatering.Forthedroughttreatment,thesoilmoisturecontentwasreducedto50%offieldcapacityandmaintainedatthisleveluntiltheendoftheexperiment.Theplantswereharvestedatthesix-leafstageforanalysisofCID.CIDanalysisCIDanalysiswascarriedoutusinganisotoperatiomassspectrometer(DeltaVAdvantage,ThermoFisherScientific)followingthemethodsdescribedbyCondonetal.(2004).AtotalofthreereplicatesampleswerecollectedfromeachRIL,andtheCIDvaluewascalculatedasfollows:CID=((813Cair/1000)-(813Cleaf71OOO))/((613Cair/1000)+1)where813Cairand813CleafrepresentthestablecarbonisotopecompositionofatmosphericCO2andleaftissue,respectively.GenotypingandQTLanalysisGenomicDNAwasextractedfromyoungleavesoftheRILsusingtheCTABmethod(MurrayandThompson,1980).Atotalof2,500SNPmarkersweregenotypedusingtheIlluminaInfiniumiSelect90KwheatSNParray(Wangetal.,2014).SNPmarkerswithaminorallelefrequency<5%,callrate<90%,orsignificantdeviationfromHardy-Weinbergequilibrium(p<0.05)wereremovedfromtheanalysis.Atotalof1,500high-qualitySNPmarkerswereusedfortheQTLanalysis.QTLanalysiswasperformedusingtheQTLCartographer2.5software(WangetaL,2012).Compositeintervalmapping(CIM)wasusedtodetectQTLsassociatedwithCIDunderdifferentsoilmoistureconditions.TheLODthresholdfordeclaringsignificantQTLswasdeterminedusingpermutationtestswith1,000iterationsatagenome-widesignificancelevelofp<0.05.ResultsPhenotypicanalysisTheCIDvaluesoftheRILsrangedfrom18.43to22.93underthewell-wateredtreatmentand20.64to25.14underthedroughttreatment(Figure1).ThemeanCIDvaluewassignificantlyhigherunderthedroughttreatment(23.46)comparedtothewell-wateredtreatment(20.06)(p<0.001).Asignificantgenotypexwaterinteractioneffectwasobserved,indicatingthatthegeneticvariationinCIDwasinfluencedbythesoilmoistureconditions(p<0.001).QTLanalysisFourQTLsassociatedwithCIDwereidentifiedunderdifferentsoilmoistureconditions(Table1,Figure2).QTL1andQTL2werespecifictothedroughttreatment,explaining9.3%and8.6%ofthephenotypicvariation,respectively.QTL3andQTL4wereassociatedwiththetraitunderthewell-wateredtreatment,explaining6.1%and4.4%ofthephenotypicvariation,respectively.TheadditiveeffectsoftheQTLsrangedfrom-0.95to-1.92,indicatingthattheallelesfrom'Anza'reducedCIDunderbothwaterregimes.DiscussionOurstudyidentifiedfoursignificantQTLsassociatedwithcarbonisotopediscriminationinawheatmappingpopulationunderdifferentsoilmoistureconditions.TwoQTLswerespecifictothedroughttreatment,whiletwoQTLswereassociatedwiththetraitunderthewell-wateredtreatment.OurresultsindicatethatCIDisacomplextraitinfluencedbymultiplegenesandenvironmentalfactors.TheQTLsidentifiedinourstudyhavepotentialapplicationsinbreedingfordroughttoleranceinwheat.QTL1andQTL2areuniquetothedroughttreatmentandarelocatedonchromosomeIBand7B,respectively.TheseQTLsmaybeofparticularinterestforimprovingthedroughttoleranceofwheatvarietiesgrowninaridandsemi-aridregions.QTL3andQTL4,ontheotherhand,wereassociatedwiththetraitunderthewell-wateredtreatmentandmaybeofinterestforimprovingtheWUEofwheatvarietiesinregionswithsufficientwateravailability.Interestingly,QTL1andQTL3wereco-localizedwithpreviouslyreportedQTLsforWUEinwheat(Ehdaieetal.,2006;Rebetzkeetal.,2002),suggestingapotentiallinkbetweenthetwotraits.ThisfindingisconsistentwithpreviousstudiesshowingthatCIDiscloselyrelatedtoWUEinwheatandothercrops(CondonetaL,2004;Farquharetal.,1989).Inconclusion,thisstudyprovidesvaluableinsightsintothegeneticbasisofcarbonisotopediscriminationinwheatunderdifferentsoilmoistureconditions.OurresultsdemonstratethepresenceofsignificantgeneticvariationinCIDandthepotentialofQTLsforimprovingthedroughttoleranceandWUEofwheatvarieties.FurtherresearchisneededtoconfirmtheeffectsoftheseQTLsindifferentgeneticbackgroundsandenvironmentalconditions.Table1.QTLsassociatedwithcarbonisotopediscriminationinawheatmappingpopulationunderdifferentsoilmoistureconditions.QTLChrMarkerposition(cM)Peakposition(cM)LODEffect(%)QTL3IB68.568.53.5-1.28QTL45B49.349.33.0-0.95Distributionofcarbonisotopediscrimination(CID)in200RILsofawheatmappingpopulationunderdifferentsoilmoistureconditions.QTLsassociatedwithcarbonisotopediscrimination(CID)inawheatmappingpopulationunderdifferentsoilmoistureconditions.CI:Confidenceinterval.ReferencesCondon,A.G・,Richards,R.A・,Rebetzke,G.J.,&Farquhar,G.D.(2004).Improvingintrinsicwater-useefficiencyandcropyield.CropScience,44(2),267-273.Condon,A.G.,Richards,R.A.,&Farquhar,G.D.(2002).Relationshipsbetweenwater-useefficiency,carbonisotopediscrimination,andturfqualityingenotypesofKentuckybluegrassduringdrought.AustralianJournalofAgriculturalResearch,53(11-12),11914199.Ehdaie,B.,Alloush,G.A.,Waines,J.G.,&Heath,M.R.(2006).Genotypicvariationforstemreservesandmobilizationinwheat.CropScience,46(2),735-745.Farquhar,G.D.,&Richards,R.A.(1984).Isotopiccompositionofplantcarboncorrelateswithwater-useefficiencyofwheatgenotypes.AustralianJournalofPlantPhysiology,11(6),539-552.Farquhar,G.D.,Ehleringer,J.R.,&Hubick,K.T.(1989).Carbonisotopediscriminationandphotosynthesis.AnnualRevie
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年分手合伙协议书经典范例
- 2025年度员工福利放弃策划协议
- 2025年金融资产拍卖策划授权代理合作协议书
- 2025年货车运输服务策划协议模板
- 2025年社保待遇执行协议标准
- 2025年某地区公共场所电梯策划更新改造协议书
- 2025年企业综合借款协议
- 企业法律权益保护的现状及总体形势
- 商业空间节假日旅游市场发展研究方法规划基础知识点归纳
- 理赔业务风险培训创新性风险基础知识点归纳
- 2025年生态环境保护知识测试题及答案
- 2025年二级建造师考试《矿业工程管理与实物》真题及答案
- 植物保护通论重点复习题
- 儿童抽动障碍共患焦虑抑郁障碍诊治2025
- 道路监控系统培训课件
- 活动策划服务投标方案(技术方案)
- 2025慢性阻塞性肺病(GOLD)指南更新要点解读课件
- 高教版2023年中职教科书《语文》(基础模块)下册教案全册
- 湖南省 2023-2024 年普通高中学业水平合格性考试(一) 语文试卷(含答案)
- (完整word版)毛笔书法—A4纸米字格
- 介入导管室应急预案及处理流程
评论
0/150
提交评论