2023年吉林省白山市长白县实验中学高二数学第二学期期末质量检测试题含解析_第1页
2023年吉林省白山市长白县实验中学高二数学第二学期期末质量检测试题含解析_第2页
2023年吉林省白山市长白县实验中学高二数学第二学期期末质量检测试题含解析_第3页
2023年吉林省白山市长白县实验中学高二数学第二学期期末质量检测试题含解析_第4页
2023年吉林省白山市长白县实验中学高二数学第二学期期末质量检测试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023高二下数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数的一个零点所在的区间是()A.(0,1) B.(1,2) C.(2,3) D.(3,4)2.若6名男生和9名女生身高(单位:)的茎叶图如图,则男生平均身高与女生身高的中位数分别为()A.179,168 B.180,166 C.181,168 D.180,1683.某一批花生种子,如果每1粒发芽的概率为,那么播下3粒种子恰有2粒发芽的概率是()A. B. C. D.4.双曲线C:的左、右焦点分别为、,P在双曲线C上,且是等腰三角形,其周长为22,则双曲线C的离心率为()A. B. C. D.5.己知三边,,的长都是整数,,如果,则符合条件的三角形的个数是()A. B. C. D.6.已知,,则A. B. C. D.7.由曲线,直线及轴所围成的平面图形的面积为()A.6 B.4 C. D.8.下列四个命题中,其中错误的个数是()①经过球面上任意两点,可以作且只可以作一个大圆;②经过球直径的三等分点,作垂直于该直径的两个平面,则这两个平面把球面分成三部分的面积相等;③球的面积是它大圆面积的四倍;④球面上两点的球面距离,是这两点所在截面圆上,以这两点为端点的劣弧的长.A.0 B.1 C.2 D.39.若变量满足约束条件,则的取值范围是()A. B. C. D.10.已知点P是双曲线上一点,若,则△的面积为()A. B. C.5 D.1011.由曲线,所围成图形的面积是()A. B. C. D.12.若,,满足,,.则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知实数满足,则的最大值为____.14.在的展开式中,含项的系数为______.15.已知集合,则_____.16.若的展开式中常数项为,则展开式中的系数为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在△ABC中,角A,B,C所对的边分别为a,b,c,且.(1)判断△ABC的形状;(2)若,求的取值范围.18.(12分)为了解某养殖产品在某段时间内的生长情况,在该批产品中随机抽取了120件样本,测量其增长长度(单位:),经统计其增长长度均在区间内,将其按,,,,,分成6组,制成频率分布直方图,如图所示其中增长长度为及以上的产品为优质产品.(1)求图中的值;(2)已知这120件产品来自于,B两个试验区,部分数据如下列联表:将联表补充完整,并判断是否有99.99%的把握认为优质产品与A,B两个试验区有关系,并说明理由;下面的临界值表仅供参考:(参考公式:,其中)(3)以样本的频率代表产品的概率,从这批产品中随机抽取4件进行分析研究,计算抽取的这4件产品中含优质产品的件数的分布列和数学期望E(X).19.(12分)已知函数f(x)=ln.(1)求函数f(x)的定义域,并判断函数f(x)的奇偶性;(2)对于x∈[2,6],f(x)=ln>ln恒成立,求实数m的取值范围.20.(12分)如图,在三棱锥中,底面,且,,,、分别是、的中点.(1)求证:平面平面;(2)求二面角的平面角的大小.21.(12分)4月23日是“世界读书日”,某中学在此期间开展了一系列的读书教育活动.为了解高三学生课外阅读情况,采用分层抽样的方法从高三某班甲、乙、丙、丁四个小组中随机抽取10名学生参加问卷调查.各组人数统计如下:(1)从参加问卷调查的10名学生中随机抽取两名,求这两名学生来自同一个小组的概率;(2)在参加问卷调查的10名学生中,从来自甲、丙两个小组的学生中随机抽取两名,用表示抽得甲组学生的人数,求的分布列和数学期望.22.(10分)已知函数.(1)若是的一个极值点,判断的单调性;(2)若有两个极值点,,且,证明:.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】

根据函数零点的判定定理进行判断即可【详解】是连续的减函数,又可得f(2)f(3)<0,∴函数f(x)的其中一个零点所在的区间是(2,3)故选C【点睛】本题考查了函数零点的判定定理,若函数单调,只需端点的函数值异号即可判断零点所在区间,是一道基础题.2、C【解析】

根据平均数和中位数的定义即可得出结果.【详解】6名男生的平均身高为,9名女生的身高按由低到高的顺序排列为162,163,166,167,168,170,176,184,185,故中位数为168.故选:C.【点睛】本题考查由茎叶图求平均数和中位数,难度容易.3、B【解析】

根据题意得到,计算得到答案.【详解】播下3粒种子恰有2粒发芽的概率.故选:.【点睛】本题考查了概率的计算,意在考查学生的计算能力.4、B【解析】

根据双曲线的定义和等腰三角形的性质,即可得到c,化简整理可得离心率.【详解】双曲线,可得a=3,因为是等腰三角形,当时,由双曲线定义知|PF1|=2a+|PF2|,在△F1PF2中,2c+2c+|PF2|=22,即6c﹣2a=22,即c,解得C的离心率e,当时,由双曲线定义知|PF1|=2a+|PF2|=2a+2c,在△F1PF2中,2a+2c+2c+2c=22,即6c=22﹣2a=16,即c,解得C的离心率e<1(舍),故选B.【点睛】本题考查了双曲线的简单性质,考查了运算求解能力和推理论证能力,属于中档题.5、D【解析】

根据题意,可取的值为1、2、3、…25,由三角形的三边关系,有,对分情况讨论,分析可得可取的情况,即可得这种情况下符合条件的三角形的个数,由分类计数原理,结合等差数列的前项和公式,计算可得答案.【详解】解:根据题意,可取的值为1、2、3、…25,

根据三角形的三边关系,有,

当时,有25≤<26,则=25,有1种情况,

当时,有25≤<27,则=25、26,有2种情况,

当时,有25≤<28,则=25、26、27,有3种情况,

当时,有25≤<29,则=25、26、27、28,有4种情况,

当时,有有25≤<50,则=25、26、27、28…49,有25种情况,

则符合条件的三角形共有1+2+3+4+…+25=;

故选:D.【点睛】本题考查分类计数原理的运用,涉及三角形三边的关系,关键是发现变化时,符合条件的三角形个数的变化规律.6、A【解析】,故选A.7、D【解析】

先求可积区间,再根据定积分求面积.【详解】由,得交点为,所以所求面积为,选D.【点睛】本题考查定积分求封闭图形面积,考查基本求解能力,属基本题.8、C【解析】

结合球的有关概念:如球的大圆、球面积公式、球面距离等即可解决问题,对于球的大圆、球面积公式、球面距离等的含义的理解,是解决此题的关键.【详解】对于①,若两点是球的一条直径的端点,则可以作无数个球的大圆,故①错;

对于②三部分的面积都是,故②正确对于③,球面积=,是它大圆面积的四倍,故③正确;

对于④,球面上两点的球面距离,是这两点所在大圆上以这两点为端点的劣弧的长,故④错.

所以①④错误.

所以C选项是正确的.【点睛】本题考查球的性质,特别是求两点的球面距离,这两个点肯定在球面上,做一个圆使它经过这两个点,且这个圆的圆心在球心上,两点的球面距离对应的是这个圆两点之间的对应的较短的那个弧的距离.9、B【解析】分析:根据约束条件画出平面区域,再将目标函数转换为,则为直线的截距,通过平推法确定的取值范围.详解:(1)画直线,和,根据不等式组确定平面区域,如图所示.(2)将目标函数转换为直线,则为直线的截距.(3)画直线,平推直线,确定点A、B分别取得截距的最小值和最大值.易得,联立方程组,解得,B坐标为(4)分别将点A、B坐标代入,,的取值范围是故选B.点睛:本题主要考查线性规划问题,数形结合是解决问题的关键.目标函数型线性规划问题解题步骤:(1)确定可行区域(2)将转化为,求z的值,可看做求直线,在y轴上截距的最值。(3)将平移,观察截距最大(小)值对应的位置,联立方程组求点坐标。(4)将该点坐标代入目标函数,计算Z。10、C【解析】设,则:,则:,由勾股定理可得:,综上可得:则△的面积为:.本题选择C选项.点睛:(1)双曲线定义的集合语言:P={M|||MF1|-|MF2||=2a,0<2a<|F1F2|}是解决与焦点三角形有关的计算问题的关键,切记对所求结果进行必要的检验.(2)利用定义解决双曲线上的点与焦点的距离有关问题时,弄清点在双曲线的哪支上.11、A【解析】

先计算交点,再根据定积分计算面积.【详解】曲线,,交点为:围成图形的面积:故答案选A【点睛】本题考查了定积分的计算,意在考查学生的计算能力.12、A【解析】

利用指数函数和对数函数的单调性即可比较大小.【详解】,,,,,,,,,故选:A.【点睛】本题考查了指数函数和对数函数的单调性,考查了计算能力和推理能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、2【解析】

根据约束条件得到可行域,令,则取最大值时,在轴截距最大;通过平移可知过时即可,代入求得最大值.【详解】由约束条件可得可行域如下图阴影部分所示:令,则取最大值时,在轴截距最大通过平移可知当过时,在轴截距最大本题正确结果:【点睛】本题考查线性规划求解最值的问题,关键是将问题转化为截距最值的求解问题,属于常考题型.14、【解析】

利用二项展开式通项,令的指数为,求出参数的值,再代入通项可得出项的系数.【详解】二项式展开式的通项为,令,因此,在的展开式中,含项的系数为,故答案为:.【点睛】本题考查利用二项式通项求指定项的系数,考查运算求解能力,属于基础题.15、【解析】

直接进行交集的运算即可.【详解】解:∵A={2,3,4},B={3,5};∴A∩B={3}.故答案为:{3}.【点睛】考查列举法的定义以及交集的运算,属于基础题.16、【解析】

首先求出的展开式的通项公式,通过计算常数项求出a的值,再利用通项公式求的系数.【详解】展开式的通项公式为,当时,常数项为,所以.当时,,展开式中的系数为.【点睛】本题考查二项式定理展开式的应用,考查二项式定理求特定项的系数,解题的关键是求出二项式的通项,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)△ABC为的直角三角形.(2).【解析】

分析:(1)由已知条件结合正弦定理对已知化简可求得角的值,进而可判断三角形的形状;(2)由辅助角公式对已知函数先化简,然后代入可求得,结合(1)中的角求得角的范围,然后结合正弦函数的性质,即可求解.【详解】(1)因为,由正弦定理可得,即,所以.因为在△ABC中,,所以又,所以,.所以△ABC为的直角三角形.(2)因为=.所以.因为△ABC是的直角三角形,所以,且,所以当时,有最小值是.所以的取值范围是.点睛:本题主要考查了利用正弦定理和三角函数的恒等变换求解三角形问题,对于解三角形问题,通常利用正弦定理进行“边转角”寻求角的关系,利用“角转边”寻求边的关系,利用余弦定理借助三边关系求角,利用两角和差公式及二倍角公式求三角函数值.利用正、余弦定理解三角形问题是高考高频考点,经常利用三角形内角和定理,三角形面积公式,结合正、余弦定理解题.18、(1)0.025;(2)见解析;(3)见解析【解析】

(1)根据面积之和为1,列出关系式,解出a的值.(2)首先根据频率分布直方图中的数据计算A,B这两个试验区优质产品、非优质产品的总和,然后根据表格填入数据,再根据公式计算即可.(3)以样本频率代表概率,则属于二项分布,利用二项分布的概率公式计算分布列和数学期望即可.【详解】(1)根据频率分布直方图数据,得:,解得.(2)根据频率分布直方图得:样本中优质产品有,列联表如下表所示:试验区试验区合计优质产品102030非优质产品603090合计7050120∴,∴没有的把握认为优质产品与,两个试验区有关系.(3)由已知从这批产品中随机抽取一件为优质产品的概率是,随机抽取4件中含有优质产品的件数X的可能取值为0,1,2,3,4,且,∴,,,,,∴的分布列为:01234E(X)【点睛】本题考查频率分布直方图,独立性检验以及二项分布的分布列和期望值的计算,同时考查了学生分析问题的能力和计算能力,属于中档题.19、(1)(-∞,-1)∪(1,+∞),奇函数.(2)0<m<7.【解析】

(1)解不等式>0,即得函数的定义域.再利用奇偶函数的判定方法判断函数的奇偶性.(2)转化成以0<m<(x+1)(7-x)在x∈[2,6]上恒成立.再求出函数的最小值得解.【详解】(1)由>0,解得x<-1或x>1,所以函数f(x)的定义域为(-∞,-1)∪(1,+∞),当x∈(-∞,-1)∪(1,+∞)时,f(-x)=ln=ln=ln=-ln=-f(x),所以f(x)=ln是奇函数.(2)由于x∈[2,6]时,f(x)=ln>ln恒成立,所以>>0,因为x∈[2,6],所以0<m<(x+1)(7-x)在x∈[2,6]上恒成立.令g(x)=(x+1)(7-x)=-(x-3)2+16,x∈[2,6],由二次函数的性质可知,x∈[2,3]时函数g(x)单调递增,x∈[3,6]时函数g(x)单调递减,即x∈[2,6]时,g(x)min=g(6)=7,所以0<m<7.【点睛】本题主要考查函数定义域的求法,考查对数函数的单调性和不等式的恒成立问题,意在考查学生对这些知识的理解掌握水平,属于中档题.20、(Ⅰ)证明过程详见解析;(Ⅱ).【解析】

(Ⅰ)已知SB、AB、BC两两互相垂直,故可建立空间直角坐标系如下图.根据线段长度可求出相应点的坐标,从而可推出,则,所以平面平面BCD.(Ⅱ)求出两个平面的法向量,利用法向量夹角与二面角平面角的关系求出平面角的大小.【详解】(Ⅰ).又因,所以建立如上图所示的坐标系.所以A(2,0,0),,,D(1,0,1),,S(0,0,2)易得,,,又,又又因,所以平面平面BCD.(Ⅱ)又设平面BDE的法向量为,则,即所以又因平面SBD的法向量为所以由图可得二面角为锐角,所以二面角的平面角的大小为.考点:平面与平面的垂直的证明‚二面角大小的求法.21、(1);(2)答案见解析.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论