




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.给出下列三个命题:(1)如果一个平面内有无数条直线平行于另一个平面,则这两个平面平行;(2)一个平面内的任意一条直线都与另一个平面不相交,则这两个平面平行;(3)一个平面内有不共线的三点到另一个平面的距离相等,则这两个平面平行;其中正确命题的个数是()A.0 B.1 C.2 D.32.椭圆的焦点坐标是()A. B. C. D.3.已知,,,则下列说法正确是()A. B.C.与的夹角为 D.4.已知双曲线的方程为,则下列说法正确的是()A.焦点在轴上 B.渐近线方程为C.虚轴长为4 D.离心率为5.已知,,均为正实数,则,,的值()A.都大于1 B.都小于1C.至多有一个不小于1 D.至少有一个不小于16.若复数是纯虚数(是实数,是虚数单位),则等于()A.2 B.-2 C. D.7.用数学归纳法证明等式时,第一步验证时,左边应取的项是()A.1 B. C. D.8.设a=e1eA.a>c>b B.c>a>b C.c>b>a D.a>b>c9.已知集合,则为()A. B. C. D.10.“”是双曲线的离心率为()A.充要条件 B.必要不充分条件 C.即不充分也不必要条件 D.充分不必要条件11.将甲,乙等5位同学分别保送到北京大学,清华大学,浙江大学等三所大学就读,则每所大学至少保送一人的不同保送的方法数为()A.150种 B.180种 C.240种 D.540种12.已知一组样本点,其中.根据最小二乘法求得的回归方程是,则下列说法正确的是()A.若所有样本点都在上,则变量间的相关系数为1B.至少有一个样本点落在回归直线上C.对所有的预报变量,的值一定与有误差D.若斜率,则变量与正相关二、填空题:本题共4小题,每小题5分,共20分。13.已知,在某一个最小正周期内,函数图象的一个最高点和最低点对应的横坐标分别为和,则______________.14.双曲线的两个焦点为,若为其右支上一点,且,则双曲线离心率的取值范围为.15.命题“,”的否定是______.16.二项式的展开式的常数项为________(用数字作答).三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在多面体中,平面,四边形为正方形,四边形为梯形,且,,,.(1)求直线与平面所成角的正弦值;(2)线段上是否存在点,使得直线平面?若存在,求的值:若不存在,请说明理由.18.(12分)数列满足).(1)计算,并由此猜想通项公式;(2)用数学归纳法证明(1)中的猜想.19.(12分)如图,在正四棱柱中,已知AB=2,,E、F分别为、上的点,且.(1)求证:BE⊥平面ACF;(2)求点E到平面ACF的距离.20.(12分)在平面直角坐标系中,以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系.已知点A的极坐标为,直线l的极坐标方程为ρcos=a,且点A在直线l上.(1)求a的值及直线l的直角坐标方程;(2)圆C的参数方程为(α为参数),试判断直线l与圆C的位置关系.21.(12分)已知曲线y=x3+x-2在点P0处的切线平行于直线4x-y-1=0,且点P0在第三象限,⑴求P0的坐标;⑵若直线,且l也过切点P0,求直线l的方程.22.(10分)已知函数(且)的图象过定点P,且点P在直线(,且)上,求的最小值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
根据面面平行的位置关系的判定依次判断各个命题的正误,从而得到结果.【详解】(1)若一个平面内有无数条互相平行的直线平行于另一个平面,两个平面可能相交,则(1)错误;(2)平面内任意一条直线与另一个平面不相交,即任意一条直线均与另一个平面平行,则两个平面平行,(2)正确;(3)若不共线的三点中的两点和另一个点分别位于平面的两侧,此时虽然三点到平面距离相等,但两平面相交,(3)错误.本题正确选项:【点睛】本题考查面面平行相关命题的辨析,考查学生的空间想象能力,属于基础题.2、C【解析】
从椭圆方程确定焦点所在坐标轴,然后根据求的值.【详解】由椭圆方程得:,所以,又椭圆的焦点在上,所以焦点坐标是.【点睛】求椭圆的焦点坐标时,要先确定椭圆是轴型还是轴型,防止坐标写错.3、D【解析】
根据向量运算和向量夹角公式,向量模依次判断每个选项得到答案.【详解】,故,故错误;,故错误;,故,故,错误;,故,正确.故选:.【点睛】本题考查了向量数量积,向量夹角,向量模,意在考查学生的计算能力.4、B【解析】
根据双曲线方程确定双曲线焦点、渐近线方程、虚轴长以及离心率,再判断得到答案.【详解】双曲线的方程为,则双曲线焦点在轴上;渐近线方程为;虚轴长为;离心率为,判断知正确.故选:【点睛】本题考查了双曲线的焦点,渐近线,虚轴长和离心率,意在考查学生对于双曲线基础知识的掌握情况.5、D【解析】分析:对每一个选项逐一判断得解.详解:对于选项A,如果a=1,b=2,则,所以选项A是错误的.对于选项B,如果a=2,b=1,则,所以选项B是错误的.对于选项C,如果a=4,b=2,c=1,则,所以选项C是错误的.对于选项D,假设,则,显然二者矛盾,所以假设不成立,所以选项D是正确的.故答案为:D.点睛:(1)本题主要考查反证法,意在考查学生对该知识的掌握水平.(2)三个数至少有一个不小于1的否定是6、B【解析】
利用复数的运算法则进行化简,然后再利用纯虚数的定义即可得出.【详解】∵复数(1+ai)(1﹣i)=1+a+(1a﹣1)i是纯虚数,∴,解得a=﹣1.故选B.【点睛】本题考查了复数的乘法运算、纯虚数的定义,属于基础题.7、D【解析】由数学归纳法的证明步骤可知:当时,等式的左边是,应选答案D.8、B【解析】
依据y=lnx的单调性即可得出【详解】∵b=ln而a=e1e>0,c=又lna=lne1所以lnc>lna,即有c>a,因此c>a>b【点睛】本题主要考查利用函数的单调性比较大小。9、C【解析】
分别求出集合M,N,和,然后计算.【详解】解:由,得,故集合由,得,故集合,所以故选:C.【点睛】本题考查了指数函数的值域,对数函数的定义域,集合的交集和补集运算,属于基础题.10、D【解析】
将双曲线标准化为,由于离心率为可得,在根据充分、必要条件的判定方法,即可得到结论.【详解】将双曲线标准化则根据离心率的定义可知本题中应有,则可解得,因为可以推出;反之成立不能得出.故选:.【点睛】本题考查双曲的离心率公式,考查充分不必要条件的判断,双曲线方程的标准化后离心率公式的正确使用是解答本题的关键,难度一般.11、A【解析】先将个人分成三组,或,分组方法有中,再将三组全排列有种,故总的方法数有种.选A.12、D【解析】分析:样本点均在直线上,则变量间的相关系数,A错误;样本点可能都不在直线上,B错误;样本点可能在直线上,即预报变量对应的估计值可能与可以相等,C错误;相关系数与符号相同D正确.详解:选项A:所有样本点都在,则变量间的相关系数,相关系数可以为,故A错误.选项B:回归直线必过样本中心点,但样本点可能都不在回归直线上,故B错误.选项C:样本点可能在直线上,即可以存在预报变量对应的估计值与没有误差,故C错误.选项D:相关系数与符号相同,若斜率,则,样本点分布从左至右上升,变量与正相关,故D正确.点睛:本题考查线性回归分析的相关系数、样本点、回归直线、样本中心点等基本数据,基本概念的准确把握是解题关键.二、填空题:本题共4小题,每小题5分,共20分。13、1【解析】
由函数图象的一个最高点和最低点对应的横坐标分别为和求得周期,再由周期公式求解即可.【详解】由函数图象的一个最高点和最低点对应的横坐标分别为和,得,所以,所以,即.故答案为:1【点睛】本题主要考查正弦型函数周期的求法和周期公式的应用,属于基础题.14、【解析】
设P点的横坐标为x,根据|PF1|=2|PF2|,P在双曲线右支(x≥a),利用双曲线的第二定义,可得x关于e的表达式,进而根据x的范围确定e的范围.【详解】∵,P在双曲线右支(x⩾a)根据双曲线的第二定义,可得,∴ex=3a∵x⩾a,∴ex⩾ea∴3a⩾ea,∴e⩽3∵e>1,∴1<e⩽3故答案为:.【点睛】本题主要考查双曲线的定义及离心率,属于难题.离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出,从而求出;②构造的齐次式,求出;③采用离心率的定义以及圆锥曲线的定义来求解;④根据圆锥曲线的统一定义求解.15、【解析】
特称命题的否定为全称命题,即可求解.【详解】解:由题意知,原命题的否定是:.故答案为:.【点睛】本题考查了命题的否定.易错点是混淆了命题的否定和否命题的概念.这类问题的常见错误是没有改变量词,或者对于大于的否定变成了小于.16、【解析】由已知得到展开式的通项为:,令r=12,得到常数项为;故答案为:18564.点睛:求二项展开式有关问题的常见类型及解题策略(1)求展开式中的特定项.可依据条件写出第r+1项,再由特定项的特点求出r值即可.(2)已知展开式的某项,求特定项的系数.可由某项得出参数项,再由通项写出第r+1项,由特定项得出r值,最后求出其参数.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】
建立适当的空间直角坐标系.(1)求出平面的法向量,利用空间向量夹角公式可以求出直线与平面所成角的正弦值;(2)求出平面的法向量,结合线面平行的性质,空间向量共线的性质,如果求出的值,也就证明出存在线段上是否存在点,使得直线平面,反之就不存在.【详解】以为空间直角坐标系的原点,向量所在的直线为轴.如下所示:.(1)平面的法向量为,..直线与平面所成角为,所以有;(2)假设线段上是存在点,使得直线平面.设,因此,所以的坐标为:..设平面的法向量为,,,因为直线平面,所以有,即.【点睛】本题考查了线面角的求法以及线面平行的性质,考查了数学运算能力.18、(1),;(2)证明见解析.【解析】试题分析:(1)分别令,可求解的值,即可猜想通项公式;(2)利用数学归纳法证明.试题解析:(1),由此猜想;(2)证明:当时,,结论成立;假设(,且),结论成立,即当(,且)时,,即,所以,这表明当时,结论成立,综上所述,.考点:数列的递推关系式及数学归纳法的证明.19、(1)见解析(2)【解析】分析:(1)以为原点,所在直线分别为轴建立空间直角坐标系,写出要用的点的坐标,要证明线与面垂直,只需证明这条直线与平面上的两条直线垂直即可;(2)为平面的一个法向量,向量在上的射影长即为到平面的距离,根据点到面的距离公式可得到结论.详解:(1)证明:以D为原点,DA、DC、DD1所在直线分别为x、y、z轴建立如图所示空间直角坐标系,则D(0,0,0)、A(2,0,0)、B(2,2,0)、C(0,2,0)、D1(0,0,5)、E(0,0,1)、F(2,2,4).∴=(-2,2,0)、=(0,2,4)、=(-2,-2,1)、=(-2,0,1).∵·=0,·=0,∴BE⊥AC,BE⊥AF,且AC∩AF=A.∴BE⊥平面ACF.(2)由(1)知,为平面ACF的一个法向量,∴点E到平面ACF的距离d==.故点E到平面ACF的距离为.点睛:本题主要考查利用空间向量求点到面的距离,属于中档题.空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离.20、(1),;(2)相交.【解析】
(Ⅰ)由点在直线上,可得所以直线的方程可化为从而直线的直角坐标方程为(Ⅱ)由已知得圆的直角坐标方程为所以圆心为,半径以为圆心到直线的距离,所以直线与圆相交21、(1)(2)【解析】
本试题主要是考查了导数的几何意义,两条直线的位置关系,平行和垂直的运用.以及直线方程的求解的综合运用.首先根据已知条件,利用导数定义,得到点P3的坐标,然后利用,设出方程为x+2y+c=3,根据直线过点P3得到结论.解:(1)由y=x3+x-2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 合成孔径激光雷达技术:原理、发展与挑战
- 合作学习:开启大学英语自主学习的新钥匙
- 民政局发布离婚协议书范本及财产分割原则说明
- 原生大红紫薇苗木采购合同2篇
- 民警演讲面试题库及答案
- 教师招聘之《小学教师招聘》考试历年机考真题集含答案详解【能力提升】
- 2025呼伦贝尔农垦集团有限公司校园招聘44人笔试模拟及答案详解(新)
- 2025内蒙古呼伦贝尔农垦谢尔塔拉农牧场有限公司调整部分岗位报考专业要求笔试模拟及完整答案详解一套
- 教师招聘之《小学教师招聘》能力测试备考题含答案详解【培优】
- 2025年教师招聘之《幼儿教师招聘》考前冲刺模拟题库附答案详解【黄金题型】
- 学生课程免考(修)申请表(模板)
- 粘膜免疫 2课件
- 电子课件-《可编程序控制器及其应用(三菱-第三版)》-A04-1724-课题一-可编程序控制器基础知识
- 统计业务知识(统计法规)课件
- 实验计划样表
- 艾滋病个案流行病学调查表
- 广告策划与创意课件-2
- 地质勘察任务书模板
- 全国中心血站上岗证考试题库
- 环境社会学整本书课件完整版电子教案全套课件最全教学教程ppt(最新)
- 计算机组装与维护完整版课件(全)
评论
0/150
提交评论