2023年山南市重点中学数学高二下期末学业水平测试试题含解析_第1页
2023年山南市重点中学数学高二下期末学业水平测试试题含解析_第2页
2023年山南市重点中学数学高二下期末学业水平测试试题含解析_第3页
2023年山南市重点中学数学高二下期末学业水平测试试题含解析_第4页
2023年山南市重点中学数学高二下期末学业水平测试试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023高二下数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某校有6名志愿者,在放假的第一天去北京世园会的中国馆服务,任务是组织游客参加“祝福祖国征集留言”、“欢乐世园共绘展板”、“传递祝福发放彩绳”三项活动,其中1人负责“征集留言”,2人负责“共绘展板”,3人负责“发放彩绳”,则不同的分配方案共有()A.30种 B.60种 C.120种 D.180种2.从装有4粒大小、形状相同,颜色不同的玻璃球的瓶中,随意一次倒出若干粒玻璃球(至少一粒),则倒出奇数粒玻璃球的概率比倒出偶数粒玻璃球的概率()A.小 B.大 C.相等 D.大小不能确定3.在(x-)10的展开式中,的系数是()A.-27 B.27 C.-9 D.94.已知函数,则y=f(x)的图象大致为()A. B.C. D.5.已知函数与函数,下列选项中不可能是函数与图象的是A. B.C. D.6.若函数且在上既是奇函数又是增函数,则的图象是()A. B.C. D.7.某样本平均数为,总体平均数为,那么()A. B. C. D.是的估计值8.若,满足约束条件,则的最大值是()A. B. C.13 D.9.已知双曲线的离心率为,焦点是,,则双曲线方程为()A. B.C. D.10.甲、乙两名同学参加2018年高考,根据高三年级一年来的各种大、中、小型数学模拟考试总结出来的数据显示,甲、乙两人能考140分以上的概率分别为和,甲、乙两人是否考140分以上相互独立,则预估这两个人在2018年高考中恰有一人数学考140分以上的概率为()A. B. C. D.11.将甲,乙等5位同学分别保送到北京大学,清华大学,浙江大学等三所大学就读,则每所大学至少保送一人的不同保送的方法数为()A.150种 B.180种 C.240种 D.540种12.设集合A={x|x2-5x+6>0},B={x|x-1<0},则A∩B=A.(-∞,1) B.(-2,1)C.(-3,-1) D.(3,+∞)二、填空题:本题共4小题,每小题5分,共20分。13.已知在区间[2,+∞)上为减函数,则实数a的取值范围是______.14.为强化安全意识,某校拟在周一至周五的五天中随机选择天进行紧急疏散演练,则选择的天恰好为连续天的概率是__________.15.已知,,则___________.16.已知m>0,函数.若存在实数n,使得关于x的方程f2(x)-(2n+1)f(x)+n2+n=0有6个不同的根,则m的取值范围是________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数.(1)sin213°+cos217°-sin13°cos17°(2)sin215°+cos215°-sin15°cos15°(3)sin218°+cos212°-sin18°cos12°(4)sin2(-18°)+cos248°-sin2(-18°)cos248°(5)sin2(-25°)+cos255°-sin2(-25°)cos255°Ⅰ试从上述五个式子中选择一个,求出这个常数Ⅱ根据(Ⅰ)的计算结果,将该同学的发现推广位三角恒等式,并证明你的结论18.(12分)设是数列的前项的和,,.(1)求数列的通项公式;(2)令,数列的前项和为,求使时的最小值.19.(12分)已知函数.(1)若函数在其定义域内单调递增,求实数的最大值;(2)若存在正实数对,使得当时,能成立,求实数的取值范围.20.(12分)如图,已知点是椭圆上的任意一点,直线与椭圆交于,两点,直线,的斜率都存在.(1)若直线过原点,求证:为定值;(2)若直线不过原点,且,试探究是否为定值.21.(12分)已知.(1)设,①求;②若在中,唯一的最大的数是,试求的值;(2)设,求.22.(10分)如图,三棱锥中,,,,.(1)求证:;(2)求二面角的余弦值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】

从6人中选1人负责“征集留言”,从剩下的人中选2人负责“共绘展板”,再从剩下的人中选3人负责“发放彩绳,即可得出不同的分配方案.【详解】从6人中选1人负责“征集留言”,从剩下的人中选2人负责“共绘展板”,再从剩下的人中选3人负责“发放彩绳,则不同的分配方案共有种故选:B【点睛】本题主要考查了分组分配问题,属于基础题.2、B【解析】试题分析:四种不同的玻璃球,可设为,随意一次倒出一粒的情况有4种,倒出二粒的情况有6种,倒出3粒的情况有4种,倒出4粒的情况有1种,那么倒出奇数粒的有8种,倒出偶数粒的情况有7种,故倒出奇数粒玻璃球的概率比倒出偶数粒玻璃球的概率大.考点:古典概型.3、D【解析】试题分析:通项Tr+1=x10-r(-)r=(-)rx10-r.令10-r=6,得r=4.∴x6的系数为9考点:二项式定理4、A【解析】

利用特殊值判断函数的图象即可.【详解】令,则,再取,则,显然,故排除选项B、C;再取时,,又当时,,故排除选项D.故选:A.【点睛】本题考查函数的图象的判断,特殊值法比利用函数的导函数判断单调性与极值方法简洁,属于基础题.5、D【解析】

对进行分类讨论,分别作出两个函数图象,对照选项中的图象,利用排除法,可得结果.【详解】时,函数与图象为:故排除;,令,则或,当时,0为函数的极大值点,递减,函数与图象为:故排除;当时,0为函数的极小值点,递增,函数与图象为:故排除;故选.【点睛】本题考查的知识点是三次函数的图象和性质,指数函数的图象和性质,分类讨论思想,难度中档.函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的特征点,排除不合要求的图象.6、D【解析】

根据题意先得到,,判断其单调性,进而可求出结果.【详解】因为函数且在上是奇函数,所以所以,,又因为函数在上是增函数,所以,所以,它的图象可以看作是由函数向左平移一个单位得到,故选D.【点睛】本题主要考查函数的奇偶性与单调性以及函数图象变换,熟记函数性质即可,属于常考题型.7、D【解析】

统计学中利用样本数据估计总体数据,可知样本平均数是总体平均数的估计值.【详解】解:样本平均数为,总体平均数为,

统计学中,利用样本数据估计总体数据,

∴样本平均数是总体平均数的估计值.

故选:D.【点睛】本题考查了利用样本数据估计总体数据的应用问题,是基础题.8、C【解析】

由已知画出可行域,利用目标函数的几何意义求最大值.【详解】解:表示可行域内的点到坐标原点的距离的平方,画出不等式组表示的可行域,如图,由解得即点到坐标原点的距离最大,即.故选:.【点睛】本题考查线性规划问题,考查数形结合的数学思想以及运算求解能力,属于基础题.9、A【解析】由题意e=2,c=4,由e=,可解得a=2,又b2=c2﹣a2,解得b2=12所以双曲线的方程为.故答案为.故答案选A.10、A【解析】分析:根据互斥事件概率加法公式以及独立事件概率乘积公式求概率.详解:因为这两个人在2018年高考中恰有一人数学考140分以上的概率为甲考140分以上乙未考到140分以上事件概率与乙考140分以上甲未考到140分以上事件概率的和,而甲考140分以上乙未考到140分以上事件概率为,乙考140分以上甲未考到140分以上事件概率为,因此,所求概率为,选A.点睛:本题考查互斥事件概率加法公式以及独立事件概率乘积公式,考查基本求解能力.11、A【解析】先将个人分成三组,或,分组方法有中,再将三组全排列有种,故总的方法数有种.选A.12、A【解析】

先求出集合A,再求出交集.【详解】由题意得,,则.故选A.【点睛】本题考点为集合的运算,为基础题目.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

令,则由题意可得函数在区间上为增函数且,故有,由此解得实数的取值范围.【详解】令,则由函数,在区间上为减函数,可得函数在区间上为增函数且,故有,解得,故答案为.【点睛】本题主要考查复合函数的单调性,二次函数的性质,体现了转化的数学思想,属于中档题;求复合函数的单调区间的步骤:(1)确定定义域;(2)将复合函数分解成两个基本初等函数;(3)分别确定两基本初等函数的单调性;(4)按“同增异减”的原则,确定原函数的单调区间.14、【解析】试题分析:考查古典概型的计算公式及分析问题解决问题的能力.从个元素中选个的所有可能有种,其中连续有共种,故由古典概型的计算公式可知恰好为连续天的概率是.考点:古典概型的计算公式及运用.15、【解析】

利用求的值.【详解】.故答案为:5【点睛】本题主要考查差角的正切公式的应用,意在考查学生对该知识的理解掌握水平和分析推理能力.16、.【解析】分析:作出的图象,依题意可得4m-m2+1<m,解之即可.详解:作出f(x)的图象如图所示.当x>m时,x2-2mx+4m=(x-m)2+4m-m2,f2(x)-(2n+1)f(x)+n2+n=0,[f(x)-n][f(x)-(n+1)]=0。f(x)=n或f(x)=n+1∴要使方程f2(x)-(2n+1)f(x)+n2+n=0有6个不同的根,则4m-m2+1<m,即m2-3m-1>0.又m>0,解得m>.故答案为:.点睛:本题考查根的存在性及根的个数判断,数形结合思想的运用是关键,分析到4m-m2+1<m是难点.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、见解析【考点定位】本题主要考察同角函数关系、两角和与差的三角函数公式、二倍角公式,考查运算能力、特殊与一般思想、化归与转化思想【解析】试题分析:(1)由倍角公式及特殊角的三角函数值即可求解;(2)根据式子的结构规律,得,由三角函数中的恒等变换的公式展开即可证明.试题解析:(1)选择(2),计算如下:sin215°+cos215°-sin15°cos15°=1-sin30°=,故这个常数为.(2)根据(1)的计算结果,将该同学的发现推广,得到三角恒等式sin2α+cos2(30°-α)-sinαcos(30°-α)=证明:sin2α+cos2(30°-α)-sinαcos(30°-α)=sin2α+-sinα(cos30°cosα+sin30°sinα)=sin2α+cos2α+sin2α+sinαcosα-sinαcosα-sin2α=sin2α+cos2α=考点:三角恒等变换;归纳推理.18、(1);(2)3【解析】

(1)根据结合的递推关系可求解.

(2)由(1)可得,则,用裂项相消可求和,从而解决问题.【详解】解:(1)由两式相减得到,,;

当,也符合,综上,.(2)由得,,∴,∴,易证明在时单调递增,且,故的最小值为3.【点睛】本题考查根据的递推关系求数列的通项公式和用裂项相消法求和,属于中档题.19、(1)4(2)【解析】

(1)先求导,再根据导数和函数的单调性的关系即可求出的范围,(2)根据题意可得,因此原问题转化为存在正实数使得等式成立,构造函数,利用导数求出函数的值域,即可求出的取值范围.【详解】解析:(1)由题意得,函数在其定义域内单调递增,则在内恒成立,故.因为(等号成立当且仅当即)所以(经检验满足题目),所以实数的最大值为4.(2)由题意得,则,因此原问题转化为:存在正数使得等式成立.整理并分离得,记,要使得上面的方程有解,下面求的值域,,故在上是单调递减,在上单调递增,所以,又,故当,,综上所述,,即实数的取值范围为.【点睛】本题考查了函数的单调性、最值问题,考查导数的应用,考查转化思想,属于中档题.20、(1)见解析(2),详见解析【解析】

(1)设,,由椭圆对称性得,把点,的坐标都代入椭圆得到两个方程,再相减,得到两直线斜率乘积的表达式;(2)设,,,则,由得:,进而得到直线的方程,再与椭圆方程联立,利用韦达定理得到坐标之间的关系,最后整体代入消元,得到为定值.【详解】(1)当过原点时,设,,由椭圆对称性得,则.∵,都在椭圆上,∴,,两式相减得:,即.故.(2)设,,,则,∵,∴,设直线的方程为(),联立方程组消去,整理得.∵在椭圆上,∴,上式可化为.∴,,∴,,,∴;.∴(定值).【点睛】本题考查直线与椭圆的位置关系,对综合运算能力要求较高,对坐标法进行深入的考查,要求在运算过程中要大胆、耐心、细心地进

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论