




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是()A.0.8 B.0.75 C.0.6 D.0.452.直线y=x与曲线y=xA.52 B.32 C.23.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况.下列叙述中正确的是()A.消耗1升汽油,乙车最多可行驶5千米B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C.甲车以80千米/小时的速度行驶1小时,消耗10升汽油D.某城市机动车最高限速80千米/小时.相同条件下,在该市用丙车比用乙车更省油4.函数f(x)=ex-3x-1(e为自然对数的底数)的图象大致是()A.B.C.D.5.如图所示,一个几何体的正视图和侧视图都是边长为2的正方形,俯视图是一个直径为2的圆,则这个几何体的全面积是A. B. C. D.6.公元263年左右,我国数学家刘徽发现当圆内接多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了割圆术.利用割圆术刘徽得到了圆周率精确到小数点后面两位的近似值3.14,这就是著名的徽率.如图是利用刘徽的割圆术设计的程序框图,则输出的的值为()(参考数据:,,)A.12 B.24 C.48 D.967.黄金螺旋线又名鹦鹉螺曲线,是自然界最美的鬼斧神工。就是在一个黄金矩形(宽除以长约等于0.6的矩形)先以宽为边长做一个正方形,然后再在剩下的矩形里面再以其中的宽为边长做一个正方形,以此循环做下去,最后在所形成的每个正方形里面画出1/4圆,把圆弧线顺序连接,得到的这条弧线就是“黄金螺旋曲线了。著名的“蒙娜丽莎”便是符合这个比例,现把每一段黄金螺旋线与其每段所在的正方形所围成的扇形面积设为,每扇形的半径设为满足,若将的每一项按照上图方法放进格子里,每一小格子的边长为1,记前项所占的对应正方形格子的面积之和为,则下列结论错误的是()A. B.C. D.8.已知直线是圆的对称轴,则实数()A. B. C.1 D.29.已知的展开式中,含项的系数为70,则实数a的值为()A.1 B.-1 C.2 D.-210.若实数满足不等式组,则的最大值为()A.8 B.10 C.7 D.911.设i为虚数单位,则(x+i)6的展开式中含x4的项为()A.-15x4 B.15x4 C.-20ix4 D.20ix412.直三棱柱中,,,、分别为、的中点,则异面直线与所成角的余弦值为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若对一切,复数的模始终不大于2,则实数a的取值范围是_______;14.在的二项展开式中,常数项的值为__________15.某晚会安排5个摄影组到3个分会场负责直播,每个摄影组去一个分会场,每个分会场至少安排一个摄影组,则不同的安排方法共有______种(用数字作答).16.根据如图所示的伪代码,可知输出的结果为____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,等高的正三棱锥P-ABC与圆锥SO的底面都在平面M上,且圆O过点A,又圆O的直径AD⊥BC,垂足为E,设圆锥SO的底面半径为1,圆锥体积为.(1)求圆锥的侧面积;(2)求异面直线AB与SD所成角的大小;(3)若平行于平面M的一个平面N截得三棱锥与圆锥的截面面积之比为,求三棱锥的侧棱PA与底面ABC所成角的大小.18.(12分)已知的极坐标方程为,,分别为在直角坐标系中与轴,轴的交点.曲线的参数方程为(为参数,且),为,的中点.(1)将,化为普通方程;(2)求直线(为坐标原点)被曲线所截得弦长.19.(12分)已知函数(1)计算;(2)若在上单调递减,求实数的范围20.(12分)设函数=[].(1)若曲线在点(1,)处的切线与轴平行,求;(2)若在处取得极小值,求的取值范围.21.(12分)如图,矩形所在的平面与直角梯形所在的平面成的二面角,,,,,,.(1)求证:面;(2)在线段上求一点,使锐二面角的余弦值为.22.(10分)如图,在四棱锥中,平面平面,,,,,,.(Ⅰ)求证:平面;(Ⅱ)求直线与平面所成角的正弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
试题分析:记“一天的空气质量为优良”,“第二天空气质量也为优良”,由题意可知,所以,故选A.考点:条件概率.2、D【解析】
利用定积分的几何意义,首先利用定积分表示面积,然后计算即可.【详解】y=x与曲线y=xS=0故选:D.【点睛】本题考查了定积分的几何意义的应用,关键是正确利用定积分表示面积,属于基础题.3、D【解析】
解:对于A,由图象可知当速度大于40km/h时,乙车的燃油效率大于5km/L,∴当速度大于40km/h时,消耗1升汽油,乙车的行驶距离大于5km,故A错误;对于B,由图象可知当速度相同时,甲车的燃油效率最高,即当速度相同时,消耗1升汽油,甲车的行驶路程最远,∴以相同速度行驶相同路程,三辆车中,甲车消耗汽油最少,故B错误;对于C,由图象可知当速度为80km/h时,甲车的燃油效率为10km/L,即甲车行驶10km时,耗油1升,故行驶1小时,路程为80km,燃油为8升,故C错误;对于D,由图象可知当速度小于80km/h时,丙车的燃油效率大于乙车的燃油效率,∴用丙车比用乙车更省油,故D正确故选D.考点:1、数学建模能力;2、阅读能力及化归思想.4、D【解析】由题意,知f(0)=0,且f′(x)=ex-3,当x∈(-∞,ln3)时,f′(x)<0,当x∈(ln3,+∞)时,f′(x)>0,所以函数f(x)在(-∞,ln3)上单调递减,在(ln3,+∞)上单调递增,结合图象知只有选项D符合题意,故选D.5、C【解析】
由三视图还原可知原图形是圆柱,再由全面积公式求得全面积。【详解】由三视图还原可知原图形是圆柱,圆柱底面半径为1,高为2,所以,选C.【点睛】本题考查三视图还原及圆柱的全面积公式,需要熟练运用公式,难度较低。6、B【解析】
列出循环过程中与的数值,满足判断框的条件即可结束循环.【详解】解:模拟执行程序,可得:
,
不满足条件,
不满足条件,
满足条件,退出循环,输出的值为.
故选:B.【点睛】本题考查循环框图的应用,考查了计算能力,注意判断框的条件的应用,属于基础题.7、D【解析】
根据定义求数列和,利用化简求解,利用特殊值否定结论.【详解】由题意得为以为长和宽矩形的面积,即;;又,故正确;因为,所以D错误,选D.【点睛】本题考查数列求和以及利用递推关系化简,考查综合分析求解能力,属较难题.8、B【解析】
由于直线是圆的对称轴,可知此直线过圆心,将圆心坐标代入直线方程中可求出的值【详解】解:圆的圆心为,因为直线是圆的对称轴,所以直线过圆心,所以,解得,故选:B【点睛】此题考查直线与圆的位置关系,利用了圆的对称性求解,属于基础题9、A【解析】
分析:由题意结合二项式展开式的通项公式得到关于a的方程,解方程即可求得实数a的值.详解:展开式的通项公式为:,由于,据此可知含项的系数为:,结合题意可知:,解得:.本题选择A选项.点睛:(1)二项式定理的核心是通项公式,求解此类问题可以分两步完成:第一步根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n和r的隐含条件,即n,r均为非负整数,且n≥r,如常数项指数为零、有理项指数为整数等);第二步是根据所求的指数,再求所求解的项.(2)求两个多项式的积的特定项,可先化简或利用分类加法计数原理讨论求解.10、D【解析】
根据约束条件,作出可行域,将目标函数化为,结合图像,即可得出结果.【详解】由题意,作出不等式组表示的平面区域如下图所示,目标函数可化为,结合图像可得,当目标函数过点时取得最大值,由解得.此时.选D。【点睛】本题主要考查简单的线性规划问题,通常需要作出可行域,转化目标函数,结合图像求解,属于常考题型.11、A【解析】试题分析:二项式(x+i)6的展开式的通项为Tr+1=C6rx6-ri【考点】二项展开式,复数的运算【名师点睛】本题考查二项式定理及复数的运算,复数的概念及运算也是高考的热点,几乎是每年必考的内容,属于容易题.一般来说,掌握复数的基本概念及四则运算即可.二项式(x+i)6可以写为(i+x)6,则其通项为C6ri12、B【解析】
以为原点,为轴,为轴,为轴,建立空间直角坐标系,利用向量法能求出异面直线与所成角的余弦值.【详解】以为原点,为轴,为轴,为轴,建立空间直角坐标系,设,则、、、、,,、,设异面直线与所成角为,则,异面直线与所成角的余弦值为.故选:B【点睛】本题考查了空间向量法求异面直线所成的角,解题的关键是建立恰当的坐标系,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
由模的定义求出模,列出不等式,用几何意义解释此不等式,问题为点到的距离不大于2,而点以原点为圆心的单位圆上,因此只要到圆心距离不大于1即可.【详解】由题意,设,,则,而在圆上,∴,即,解得.故答案为:【点睛】本题考查复数的模的定义,考查平面上两点间的距离公式.解题关键是利用的几何意义,把它转化为两点间的距离,而其中一点又是单位圆上的动点,由点到圆上点的距离最大值为此点到圆心距离加半径,从而问题可转化为点到圆心的距离不大于1,这样问题易求解.14、15【解析】
写出二项展开式通项,通过得到,从而求得常数项.【详解】二项展开式通项为:当时,常数项为:本题正确结果:【点睛】本题考查二项式定理的应用,属于基础题.15、150【解析】
根据题意,先将5个摄影组可分为三队,分队的方式有2种:(1,1,3)和(1,2,2),再进行排列,由分类计数原理计算可得答案.【详解】根据题意,5个摄影组可分为三队,分队的方式有2种:(1,1,3)和(1,2,2),①按(1,1,3)进行分队有种,再分配到3个分会场,共有种;②按(1,2,2)进行分队有种,再分配到3个分会场,共有种;再进行相加,共计60+90=150种,故答案为:150.【点睛】本题考查排列、组合的实际应用问题,考查分类、分步计数原理的灵活应用,属于中等题.16、16;【解析】
程序语言表示“当型循环结构”,由值控制循环是否终止,当时,输出的值.【详解】输出.【点睛】阅读程序语言时,要注意循环体执行的次数,何时终止循环是解题的难点.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2);(3)【解析】
(1)利用圆锥体积可求得圆锥的高,进而得到母线长,根据圆锥侧面积公式可求得结果;(2)作交圆锥底面圆于点,则即为异面直线与所成角,在中,求解出三边长,利用余弦定理可求得,从而得到结果;(3)根据截面面积之比可得底面积之比,求得,进而求得等边三角形的边长,利用正棱锥的特点可知若为的中心,则即为侧棱与底面所成角,在中利用正切值求得结果.【详解】(1)设圆锥高为,母线长为由圆锥体积得:圆锥的侧面积:(2)作交圆锥底面圆于点,连接,则即为异面直线与所成角由题意知:,,又即异面直线与所成角为:(3)平行于平面M的一个平面N截得三棱锥与圆锥的截面面积之比为又,即为边长为的等边三角形设为的中心,连接,则三棱锥为正三棱锥平面即为侧棱与底面所成角即侧棱与底面所成角为:【点睛】本题考查圆锥侧面积的求解、异面直线所成角的求解、直线与平面所成角的求解.解决立体几何中的角度问题的关键是能够通过平移找到异面直线所成角、通过找到直线在平面内的投影,得到线面角.18、(1):;(2)【解析】
(1)将曲线的极坐标方程利用两角差的余弦公式展开,利用将曲线的极坐标方程化为普通方程,在曲线的参数方程中消去参数可得出曲线的普通方程;(2)求出点的坐标,可得出直线的方程,再将直线的方程与曲线的普通方程联立,求出交点、的坐标,再利用两点间的距离公式可得出.【详解】(1)的极坐标方程为,即,∴化为普通方程是:;曲线的参数方程为消去参数t得:普通方程:.(2)因为,,∴,所以直线.设直线与交于A,B两点,直线与联立得:,∴,,所以.【点睛】本题考查极坐标方程、参数方程与普通方程的互化,考查直线截二次曲线所得弦长的计算,可以利用直线参数方程的几何意义,也可以利用弦长公式来计算,都是常考题型,考查计算能力,属于中等题.19、(1)(2)【解析】
(1)直接求导得到答案.(2)在上恒成立,即恒成立,得到答案.【详解】(1),则;(2)在上恒成立,故在上恒成立,故.【点睛】本题考查了求导数,根据函数的单调性求参数,意在考查学生的计算能力.20、(1)1(2)(,)【解析】分析:(1)先求导数,再根据得a;(2)先求导数的零点:,2;再分类讨论,根据是否满足在x=2处取得极小值,进行取舍,最后可得a的取值范围.详解:解:(Ⅰ)因为=[],所以f′(x)=[2ax–(4a+1)]ex+[ax2–(4a+1)x+4a+3]ex(x∈R)=[ax2–(2a+1)x+2]ex.f′(1)=(1–a)e.由题设知f′(1)=2,即(1–a)e=2,解得a=1.此时f(1)=3e≠2.所以a的值为1.(Ⅱ)由(Ⅰ)得f′(x)=[ax2–(2a+1)x+2]ex=(ax–1)(x–2)ex.若a>,则当x∈(,2)时,f′(x)<2;当x∈(2,+∞)时,f′(x)>2.所以f(x)<2在x=2处取得极小值.若a≤,则当x∈(2,2)时,x–2<2,ax–1≤x–1<2,所以f′(x)>2.所以2不是f(x)的极小值点.综上可知,a的取值范围是(,+∞).点睛:利用导数的几何意义解题,主要是利用导数、切点坐标、切线斜率之间的关系来进行转化.以平行、垂直直线斜率间的关系为载体求参数的值,则要求掌握平行、垂直与斜率之间的关系,进而和导数联系起来求解.21、(1)见解析;(2)为线段的中点.【解析】
(1)利用面面平行的判定定理证明出平面平面,再利用平面与平面平行的性质得出平面;(2)由,,由二面角的定义得出,证明出平面平面,过点在平面内作,可证明出平面,以点为坐标原点,、所在直线分别为轴、轴建立空间直角坐标系,设点的坐标为,利用向量法结合条件锐二面角的余弦值为求出的值,由此确定点的位置.【详解】(1)在矩
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 教师招聘之《小学教师招聘》考前冲刺模拟题库附答案详解(能力提升)
- 教师招聘之《幼儿教师招聘》考试押题密卷及参考答案详解(培优b卷)
- 建筑方案设计人员6
- 关于安全生产策划活动方案
- 数字孪生技术助力智慧城市建设2025年城市规划实践报告
- 上海豫园建筑营造方案设计
- 滨州医学院附属医院课件
- 新中式酒店建筑方案设计
- 单车道双拱桥施工方案
- 电焊工程安全教育培训课件
- JC-T 2113-2012普通装饰用铝蜂窝复合板
- JB T 6527-2006组合冷库用隔热夹芯板
- 2022上海秋季高考语文卷详解(附古诗文翻译)5
- 定制手办目标市场调研
- 新版规范(2017)沥青混凝土路面设计(详细应用)
- 机器学习基础讲义
- 铁路交通事故调查处理规定-事故调查
- 慢性鼻窦炎鼻息肉护理查房课件
- set2020标准文件编写工具软件使用说明书
- 中小学教师参与学校管理研究论文
- 动叶可调式轴流风机液压调节系统课件
评论
0/150
提交评论