




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知为虚数单位,则复数=()A. B. C. D.2.将A,B,C,D,E,F这6个字母随机排成一排组成一个信息码,则所得信息码恰好满足A,B,C三个字母连在一起,且B在A与C之间的概率为()A. B. C. D.3.用反证法证明命题“设为实数,则方程至少有一个实根”时,要做的假设是()A.方程没有实根B.方程至多有一个实根C.方程至多有两个实根D.方程恰好有两个实根4.已知函数在上可导且满足,则下列一定成立的为A. B.C. D.5.在平面几何中有如下结论:正三角形的内切圆面积为,外接圆面积为,则,推广到空间中可以得到类似结论:已知正四面体的内切球体积为,外接球体积为,则为()A. B. C. D.6.已知函数的导函数的图象如图所示,那么()A.是函数的极小值点B.是函数的极大值点C.是函数的极大值点D.函数有两个极值点7.复数的共轭复数在复平面内对应的点所在的象限为()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.如图,已知棱长为1的正方体中,是的中点,则直线与平面所成角的正弦值是()A. B. C. D.9.复数在平面内对应的点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.已知点,则点轨迹方程是()A. B.C. D.11.已知是等比数列的前n项和,且是与的等差中项,则()A.成等差数列 B.成等差数列C.成等差数列 D.成等差数列12.已知函数,的值域是,则实数的取值范围是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在的二项展开式中,项的系数为________(结果用数值表示)14.甲、乙、丙、丁四名同学和一名老师站成一排合影留念.要求老师必须站在正中间,甲同学不与老师相邻,则不同站法种数为.15..16.已知随机变量的分布表如下所示,则实数的值为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设,,其中a,.Ⅰ求的极大值;Ⅱ设,,若对任意的,恒成立,求a的最大值;Ⅲ设,若对任意给定的,在区间上总存在s,,使成立,求b的取值范围.18.(12分)已知,设命题:实数满足,命题:实数满足.(1)若,为真命题,求的取值范围;(2)若是的充分不必要条件,求实数的取值范围.19.(12分)某届奥运会上,中国队以26金18银26铜的成绩称金牌榜第三、奖牌榜第二,某校体育爱好者在高三年级一班至六班进行了“本届奥运会中国队表现”的满意度调查结果只有“满意”和“不满意”两种,从被调查的学生中随机抽取了50人,具体的调查结果如表:
班号
一班
二班三班
四班
五班
六班
频数
5
9
11
9
7
9
满意人数
4
7
8
5
6
6(1)在高三年级全体学生中随机抽取一名学生,由以上统计数据估计该生持满意态度的概率;(2)若从一班至二班的调查对象中随机选取4人进行追踪调查,记选中的4人中对“本届奥运会中国队表现”不满意的人数为,求随机变量的分布列及数学期望.20.(12分)已知函数,.(1)当时,求函数的单调区间;(2)当时,若存在,使不等式成立,求的最小值.21.(12分)在四棱锥中,,,,为棱上一点(不包括端点),且满足.(1)求证:平面平面;(2)为的中点,求二面角的余弦值的大小.22.(10分)已知函数.(Ⅰ)若在处有极小值,求实数的值;(Ⅱ)若在定义域内单调递增,求实数的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
根据复数的除法运算,即可求解,得到答案.【详解】由复数的运算,可得复数,故选A.【点睛】本题主要考查了复数的基本运算,其中解答中熟记的除法运算方法,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.2、C【解析】
将A,B,C三个字捆在一起,利用捆绑法得到答案.【详解】由捆绑法可得所求概率为.故答案为C【点睛】本题考查了概率的计算,利用捆绑法可以简化运算.3、A【解析】分析:反证法证明命题时,假设结论不成立.至少有一个的对立情况为没有.故假设为方程没有实根.详解:结论“方程至少有一个实根”的假设是“方程没有实根.”点睛:反证法证明命题时,应假设结论不成立,即结论的否定成立.常见否定词语的否定形式如下:结论词没有至少有一个至多一个不大于不等于不存在反设词有一个也没有至少两个大于等于存在4、A【解析】易知在上恒成立,在上单调递减,又.本题选择C选项.点睛:函数的单调性是函数的重要性质之一,它的应用贯穿于整个高中数学的教学之中.某些数学问题从表面上看似乎与函数的单调性无关,但如果我们能挖掘其内在联系,抓住其本质,那么运用函数的单调性解题,能起到化难为易、化繁为简的作用.因此对函数的单调性进行全面、准确的认识,并掌握好使用的技巧和方法,这是非常必要的.根据题目的特点,构造一个适当的函数,利用它的单调性进行解题,是一种常用技巧.许多问题,如果运用这种思想去解决,往往能获得简洁明快的思路,有着非凡的功效.5、B【解析】
平面图形类比空间图形,二维类比三维,类比平面几何的结论,确定正四面体的外接球和内切球的半径之比,即可求得结论.【详解】设正四面体P-ABC的边长为a,设E为三角形ABC的中心,H为正四面体P-ABC的中心,则HE为正四面体P-ABC的内切球的半径r,BH=PH且为正四面体P-ABC的外接球的半径R,所以BE=,所以在中,,解得,所以R=PE-HE=,所以,根据的球的体积公式有,,故选:B.【点睛】本题考查类比推理,常见类型有:(1)等差数列与等比数列的类比;(2)平面与空间的类比;(3)椭圆与双曲线的类比;(4)复数与实数的类比;(5)向量与数的类比.6、C【解析】
通过导函数的图象可知;当在时,;当在时,,这样就可以判断有关极值点的情况.【详解】由导函数的图象可知:当在时,,函数单调递增;当在时,,函数单调递减,根据极值点的定义,可以判断是函数的极大值点,故本题选C.【点睛】本题考查了通过函数导函数的图象分析原函数的极值点的情况.本题容易受导函数的单调性的干扰.本题考查了识图能力.7、A【解析】
复数的共轭复数为,共轭复数在复平面内对应的点为.【详解】复数的共轭复数为,对应的点为,在第一象限.故选A.【点睛】本题考查共轭复数的概念,复数的几何意义.8、D【解析】
根据与平面的关系,先找到直线与平面的夹角,然后通过勾股定理求得各边长,即可求得夹角的正弦值。【详解】连接、相交于点M,连接EM、AM因为EM⊥AB,EM⊥BC1所以EM⊥平面则∠EAM即为直线与平面所成的角所以所以所以选D【点睛】本题考查了空间几何体线面的夹角关系,主要是找到直线与平面的夹角,再根据各长度求正弦值,属于中档题。9、B【解析】分析:先化简复数z,再判断其在平面内对应的点在第几象限.详解:由题得,所以复数z在平面内对应的点为,所以在平面内对应的点在第二象限.故答案为B.点睛:(1)本题主要考查复数的计算和复数的几何意义,意在考查学生对这些知识的掌握水平.(2)复数对应的点是(a,b),点(a,b)所在的象限就是复数对应的点所在的象限.复数和点(a,b)是一一对应的关系.10、A【解析】由双曲线的定义可知:点位于以为焦点的双曲线的左支上,且,故其轨迹方程为,应选答案A。11、B【解析】
由于是与的等差中项,得到,分,两种情况讨论,用等比数列的前n项和公式代入,得到,即,故得解.【详解】由于是与的等差中项,故由于等比数列,若:,矛盾;若:,即成等差数列故选:B【点睛】本题考查了等差、等比数列综合,考查了学生概念理解,转化划归,数学运算的能力,属于中档题.12、B【解析】分析:当x≤2时,检验满足f(x)≥1.当x>2时,分类讨论a的范围,依据函数的单调性,求得a的范围,综合可得结论.详解:由于函数f(x)=(a>0且a≠1)的值域是[1,+∞),故当x≤2时,满足f(x)=6﹣x≥1.①若a>1,f(x)=3+logax在它的定义域上单调递增,当x>2时,由f(x)=3+logax≥1,∴logax≥1,∴loga2≥1,∴1<a≤2.②若0<a<1,f(x)=3+logax在它的定义域上单调递减,f(x)=3+logax<3+loga2<3,不满足f(x)的值域是[1,+∞).综上可得,1<a≤2,故答案为:B点睛:本题主要考查分段函数的应用,对数函数的单调性和特殊点,属于中档题.分段函数的值域是将各段的值域并到一起,分段函数的定义域是将各段的定义域并到一起,分段函数的最值,先取每段的最值,再将两段的最值进行比较,最终取两者较大或者较小的.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
根据二项式定理展开式的通项公式,即可求得项的系数.【详解】二项式展开式的通项公式为所以当时为项则所以项的系数为故答案为:【点睛】本题考查了二项式定理展开式的应用,求指定项的系数,属于基础题.14、.【解析】试题分析:老师必须站在正中间,则老师的位置是指定的;甲同学不与老师相邻,则甲同学站两端,故不同站法种数为:,故填:.考点:排列组合综合应用.15、【解析】试题分析:考点:定积分16、【解析】
利用分布列的性质,概率之和为,列方程解出实数的值.【详解】由分布列的性质,概率之和为,可得,化简得.,因此,,故答案为.【点睛】本题考查分布列的基本性质,解题时要充分利用概率之和为来进行求解,考查运算求解能力,属于中等题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)1;(Ⅱ);(Ⅲ).【解析】
Ⅰ求出的导数,令导数大于0,得增区间,令导数小于0,得减区间,进而求得的极大值;Ⅱ当,时,求出的导数,以及的导数,判断单调性,去掉绝对值可得,构造函数,求得的导数,通过分离参数,求出右边的最小值,即可得到a的范围;Ⅲ求出的导数,通过单调区间可得函数在上的值域为,由题意分析时,结合的导数得到在区间上不单调,所以,,再由导数求得的最小值,即可得到所求范围.【详解】Ⅰ,当时,,在递增;当时,,在递减.则有的极大值为;Ⅱ当,时,,,在恒成立,在递增;由,在恒成立,在递增.设,原不等式等价为,即,,在递减,又,在恒成立,故在递增,,令,,∴,在递增,即有,即;Ⅲ,当时,,函数单调递增;当时,,函数单调递减.又因为,,,所以,函数在上的值域为.由题意,当取的每一个值时,在区间上存在,与该值对应.时,,,当时,,单调递减,不合题意,当时,时,,由题意,在区间上不单调,所以,,当时,,当时,0'/>所以,当时,,由题意,只需满足以下三个条件:,,使.,所以成立由,所以满足,所以当b满足即时,符合题意,故b的取值范围为.【点睛】本题考查导数的运用:求单调区间和极值,主要考查不等式恒成立和存在性问题,注意运用参数分离和构造函数通过导数判断单调性,求出最值,属于难题.18、(1)(2)【解析】
(1)若,分别求出成立的等价条件,利用为真命题,求出的取值范围;(2)利用是的充分不必要条件,即是的充分不必要条件,求实数的取值范围.【详解】由,得,(1)若,则:,若为真,则,同时为真,即,解得,∴实数的取值范围.(2)由,得,解得.即:.若是的充分不必要条件,即是的充分不必要条件,则必有,此时:,.则有,即,解得.【点睛】本题主要考查复合命题与简单命题之间的关系,利用逆否命题的等价性将是的充分不必要条件,转化为是的充分不必要条件是解决本题的关键.19、(1);(2)见解析【解析】分析:(1)因为在被抽取的50人中,持满意态度的学生共16人,即可得出持满意态度的频率.
(2)ξ的所有可能取值为0,1,2,1.利用超几何分布列的概率计算公式与数学期望计算公式即可得出.详解:因为在被抽取的50人中,持满意态度的学生共16人,所以持满意态度的频率为,据此估计高三年级全体学生持满意态度的概率为.的所有可能取值为0,1,2,1.;;;.的分布列为:
0
1
2
1
P
.点睛:本题考查了超几何分布列的概率计算公式与数学期望计算公式,考查了推理能力与计算能力,属中档题.20、(1)见解析;(2)2【解析】分析:(1)求出,分两种情况讨论的范围,在定义域内,分别令求得的范围,可得函数增区间,求得的范围,可得函数的减区间;(2)问题等价于,令,问题转化为求出,利用导数研究函数的单调性,利用函数的单调性求出的最小值,从而求出的最小值即可.详解:(1)解:∵∴∴当即时,对恒成立此时,的单调递增区间为,无单调递减区间当,即时,由,得,由,得此时,的单调递减区间为,单调递增区间为综上所述,当时,的单调递增区间为,无单调递减区间;当时,的单调递减区间为,单调递增区间为(2)解:由,得:当时,上式等价于令据题意,存在,使成立,则只需,令,显然在上单调递增而,∴存在,使,即又当时,,单调递减,当时,,单调递增∴当时,有极小值(也是最小值)∴∵,即,∴,∴又,且,∴的最小值为2.点睛:本题是以导数的运用为背景的函数综合题,主要考查了函数思想,化归思想,抽象概括能力,综合分析问题和解决问题的能力,属于较难题,近来高考在逐年加大对导数问题的考查力
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高一原电池课件
- 离婚协议书(房产过户与装修费用承担协议)
- 创新离婚协议书范本:兼顾双方利益与子女成长
- 离婚户口迁移协议及共同财产分割与子女教育合同
- 信息技术设备租赁合同提前终止及数据安全协议
- 离婚争议精神损害赔偿金额确定合同范本
- 离婚时财产分割、子女监护权及子女共同生活协议
- 小区安全防范措施规范
- 发动机安全运行规程
- 如何提高线下店铺的吸引力
- 四川公路工程竣工文件资料编制实施细则
- 2024年广东省深圳市初中毕业生学业考试英语试卷
- 提升家庭教育指导能力
- 《小儿支气管肺炎》课件
- 高端别墅装修施工工艺标准
- 马克思主义经典著作选读
- 对口升学课件
- 机房建设清单
- 设备借用协议范本
- 第09章-船舶甲板机械电力拖动及其电气控制
- 电子商务概论(微课版)PPT全套完整教学课件
评论
0/150
提交评论