




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数且,则实数的取值范围是()A. B. C. D.2.有不同的语文书9本,不同的数学书7本,不同的英语书5本,从中选出不属于同一学科的书2本,则不同的选法有A.21种B.315种C.153种D.143种3.用反证法证明命题:若整系数一元二次方程有有理数根,那么、、中至少有一个是偶数时,下列假设中正确的是()A.假设、、都是偶数 B.假设、、都不是偶数C.假设、、至多有一个偶数 D.假设、、至多有两个偶数4.已知数列是等比数列,若则的值为()A.4 B.4或-4 C.2 D.2或-25.在用反证法证明命题“三个正数a,b,c满足,则a,b,c中至少有一个不大于2”时,下列假设正确的是()A.假设a,b,c都大于2 B.假设a,b,c都不大于2C.假设a,b,c至多有一个不大于2 D.假设a,b,c至少有一个大于26.一盒中装有5张彩票,其中2张有奖,3张无奖,现从此盒中不放回地抽取2次,每次抽取一张彩票.设第1次抽出的彩票有奖的事件为A,第2次抽出的彩票有奖的事件为B,则()A. B. C. D.7.平面内平行于同一直线的两直线平行,由类比思维,我们可以得到()A.空间中平行于同一直线的两直线平行B.空间中平行于同一平面的两直线平行C.空间中平行于同一直线的两平面平行D.空间中平行于同一平面的两平面平行8.为了研究经常使用手机是否对数学学习成绩有影响,某校高二数学研究性学习小组进行了调查,随机抽取高二年级50名学生的一次数学单元测试成绩,并制成下面的2×2列联表:及格不及格合计很少使用手机20525经常使用手机101525合计302050则有()的把握认为经常使用手机对数学学习成绩有影响.参考公式:,其中0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.828A.97.5% B.99% C.99.5% D.99.9%9.中国古代儒家要求学生掌握六种基本才艺:礼、乐、射、御、书、数,简称“六艺”,某高中学校为弘扬“六艺”的传统文化,分别进行了主题为“礼、乐、射、御、书、数”六场传统文化知识竞赛,现有甲、乙、丙三位选手进入了前三名的最后角逐,规定:每场知识竞赛前三名的得分都分别为且;选手最后得分为各场得分之和,在六场比赛后,已知甲最后得分为分,乙和丙最后得分都是分,且乙在其中一场比赛中获得第一名,下列说法正确的是()A.乙有四场比赛获得第三名B.每场比赛第一名得分为C.甲可能有一场比赛获得第二名D.丙可能有一场比赛获得第一名10.设a=log54,b=(log53)2,c=log45,则()A.a<c<b B.b<c<a C.a<b<c D.b<a<c11.设为中的三边长,且,则的取值范围是()A. B.C. D.12.岳阳高铁站进站口有3个闸机检票通道口,高考完后某班3个同学从该进站口检票进站到外地旅游,如果同一个人进的闸机检票通道口选法不同,或几个人进同一个闸机检票通道口但次序不同,都视为不同的进站方式,那么这3个同学的不同进站方式有()种A.24 B.36 C.42 D.60二、填空题:本题共4小题,每小题5分,共20分。13.若点是曲线上任意一点,则点到直线的距离的最小值为____________14.已知为抛物线的焦点,为其标准线与轴的交点,过的直线交抛物线于,两点,为线段的中点,且,则__________.15.正四面体的所有棱长都为2,则它的体积为________.16.若圆锥的侧面积为,底面积为,则该圆锥的体积为____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥中,底面为菱形,,,且.(1)求证:平面平面;(2)若,求二面角的余弦值.18.(12分)已知数列满足,且.(Ⅰ)求,的值;(Ⅱ)是否存在实数,,使得,对任意正整数恒成立?若存在,求出实数、的值并证明你的结论;若不存在,请说明理由.19.(12分)设函数过点.(Ⅰ)求函数的极大值和极小值.(Ⅱ)求函数在上的最大值和最小值.20.(12分)时下,租车自驾游已经比较流行了.某租车点的收费标准为:不超过天收费元,超过天的部分每天收费元(不足天按天计算).甲、乙两人要到该租车点租车自驾到某景区游览,他们不超过天还车的概率分别为和,天以上且不超过天还车的概率分别为和,两人租车都不会超过天.(1)求甲所付租车费比乙多的概率;(2)设甲、乙两人所付的租车费之和为随机变量,求的分布列和数学期望.21.(12分)市某机构为了调查该市市民对我国申办年足球世界杯的态度,随机选取了位市民进行调查,调查结果统计如下:支持不支持合计男性市民女性市民合计(1)根据已知数据,把表格数据填写完整;(2)利用(1)完成的表格数据回答下列问题:(i)能否在犯错误的概率不超过的前提下认为支持申办足球世界杯与性别有关;(ii)已知在被调查的支持申办足球世界杯的男性市民中有位退休老人,其中位是教师,现从这位退休老人中随机抽取人,求至多有位老师的概率.附:,其中.22.(10分)2017年5月14日,第一届“一带一路”国际高峰论坛在北京举行,为了解不同年龄的人对“一带一路”关注程度,某机构随机抽取了年龄在15-75岁之间的100人进行调查,经统计“青少年”与“中老年”的人数之比为.关注不关注合计青少年15中老年合计5050100(1)根据已知条件完成上面的列联表,并判断能否有99%的把握认为关注“一带一路”是否和年龄段有关?(2)现从抽取的青少年中采用分层抽样的办法选取9人进行问卷调查.在这9人中再选取3人进行面对面询问,记选取的3人中关注“一带一路”的人数为X,求X的分布列及数学期望.附:参考公式,其中.临界值表:0.050.0100.0013.8416.63510.828
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】分析:先确定函数奇偶性与单调性,再利用奇偶性与单调性解不等式.详解:因为,所以,为偶函数,因为当时,单调递增,所以等价于,即,或,选A.点睛:解函数不等式:首先根据函数的性质把不等式转化为同一单调区间上的形式,然后根据函数的单调性去掉“”,转化为具体的不等式(组),此时要注意与的取值应在外层函数的定义域内.2、D【解析】由题意,选一本语文书一本数学书有9×7=63种,选一本数学书一本英语书有5×7=35种,选一本语文书一本英语书有9×5=45种,∴共有63+45+35=143种选法.故选D.3、B【解析】分析:本题考查反证法的概念,逻辑用语,否命题与命题的否定的概念,逻辑词语的否定.根据反证法的步骤,假设是对原命题结论的否定,故只须对“b、c中至少有一个偶数”写出否定即可.解答:解:根据反证法的步骤,假设是对原命题结论的否定“至少有一个”的否定“都不是”.即假设正确的是:假设a、b、c都不是偶数故选B.点评:一些正面词语的否定:“是”的否定:“不是”;“能”的否定:“不能”;“都是”的否定:“不都是”;“至多有一个”的否定:“至少有两个”;“至少有一个”的否定:“一个也没有”;“是至多有n个”的否定:“至少有n+1个”;“任意的”的否定:“某个”;“任意两个”的否定:“某两个”;“所有的”的否定:“某些”.4、A【解析】
设数列{an}的公比为q,由等比数列通项公式可得q4=16,由a3=a1q2,计算可得.【详解】因故选:A【点睛】本题考查等比数列的性质以及通项公式,属于简单题.5、A【解析】
否定结论,同时“至少有一个”改为“全部”【详解】因为“a,b,c至少有一个不大于2”的否定是“a,b,c都大于2”,故选A.【点睛】本题考查反证法,在反证法中假设命题反面成立时,结论需要否定的同时,“至少”,“至多”,“都”等词语需要改变.6、D【解析】
由题意,第1次抽出的彩票有奖,剩下4张彩票,其中1张有奖,3张无奖,即可求出.【详解】由题意,第1次抽出的彩票有奖,剩下4张彩票,其中1张有奖,3张无奖,所以.故选:D.【点睛】本题考查条件概率,考查学生的计算能力,比较基础.7、D【解析】
由平面中的线类比空间中的面即可得解。【详解】平面内平行于同一直线的两直线平行,由类比方法得:空间中平行于同一平面的两平面平行.故选:D【点睛】本题主要考查了类比推理,考查平面中的线类比空间中的面知识,属于基础题。8、C【解析】
根据2×2列联表,求出的观测值,结合题中表格数据即可得出结论.【详解】由题意,可得:,所以有99.5%的把握认为经常使用手机对数学学习成绩有影响.故选C.【点睛】本题考查了独立性检验的应用,考查了计算能力,属于基础题.9、A【解析】
先计算总分,推断出,再根据正整数把计算出来,最后推断出每个人的得分情况,得到答案.【详解】由题可知,且都是正整数当时,甲最多可以得到24分,不符合题意当时,,不满足推断出,最后得出结论:甲5个项目得第一,1个项目得第三乙1个项目得第一,1个项目得第二,4个项目得第三丙5个项目得第二,1个项目得第三,所以A选项是正确的.【点睛】本题考查了逻辑推理,通过大小关系首先确定的值是解题的关键,意在考查学生的逻辑推断能力.10、D【解析】
∵a=log54<log55=1,b=(log53)2<(log55)2=1,c=log45>log44=1,所以c最大单调增,所以又因为所以b<a所以b<a<c.故选D.11、B【解析】
由,则,再根据三角形边长可以证得,再利用不等式和已知可得,进而得到,再利用导数求得函数的单调性,求得函数的最小值,即可求解.【详解】由题意,记,又由,则,又为△ABC的三边长,所以,所以,另一方面,由于,所以,又,所以,不妨设,且为的三边长,所以.令,则,当时,可得,从而,当且仅当时取等号.故选B.【点睛】本题主要考查了解三角形,综合了函数和不等式的综合应用,以及基本不等式和导数的应用,属于综合性较强的题,难度较大,着重考查了分析问题和解答问题的能力,属于难题.12、D【解析】分析:三名同学可以选择1个或2个或3个不同的检票通道口进站,三种情况分别计算进站方式即可得到总的进站方式.详解:若三名同学从3个不同的检票通道口进站,则有种;若三名同学从2个不同的检票通道口进站,则有种;若三名同学从1个不同的检票通道口进站,则有种;综上,这3个同学的不同进站方式有种,选D.点睛:本题考查排列问题,属于中档题,解题注意合理分类讨论,而且还要注意从同一个进站口进入的学生的不同次序.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
因为点P是曲线上任意一点,则点P到直线的距离的最小值是过点P的切线与直线平行的时候,则,即点(1,1)那么可知两平行线间的距离即点(1,1)到直线的距离为14、8.【解析】分析:求得抛物线的焦点和准线方程,可得E的坐标,设过F的直线为y=k(x-1),代入抛物线方程y2=4x,运用韦达定理和中点坐标公式,可得M的坐标,运用两点的距离公式可得k,再由抛物线的焦点弦公式,计算可得所求值.详解:F(1,0)为抛物线C:y2=4x的焦点,
E(-1,0)为其准线与x轴的交点,
设过F的直线为y=k(x-1),
代入抛物线方程y2=4x,可得
k2x2-(2k2+4)x+k2=0,
设A(x1,y1),B(x2,y2),则中点解得k2=1,则x1+x2=6,由抛物线的定义可得|AB|=x1+x2+2=8,故答案为8.点睛:本题考查抛物线的定义、方程和性质,考查联立直线方程和抛物线的方程,运用韦达定理和中点坐标公式,考查运算能力,属于中档题.15、.【解析】试题分析:过作,则是的中心,连接,则,,在中,,所以.考点:多面体的体积.16、【解析】试题分析:因为,圆锥的侧面积为,底面积为,所以,解得,,所以,该圆锥的体积为.考点:圆锥的几何特征点评:简单题,圆锥之中,要弄清r,h,l之间的关系,熟练掌握面积、体积计算公式.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2).【解析】
(1)先根据计算得线线线线垂直,再根据线面垂直判定定理以及面面垂直判定定理得结论,(2)建立空间直角坐标系,利用空间向量求二面角.【详解】(1)证明:取中点,连结,,,因为底面为菱形,,所以.因为为的中点,所以.在△中,,为的中点,所以.设,则,,因为,所以.在△中,,为的中点,所以.在△和△中,因为,,,所以△△.所以.所以.因为,平面,平面,所以平面.因为平面,所以平面平面.(2)因为,,,平面,平面,所以平面.所以.由(1)得,,所以,,所在的直线两两互相垂直.以为坐标原点,分别以所在直线为轴,轴,轴建立如图所示的空间直角坐标系.设,则,,,,所以,,,设平面的法向量为,则令,则,,所以.设平面的法向量为,则令,则,,所以.设二面角为,由于为锐角,所以.所以二面角的余弦值为.【点睛】本题考查线面垂直判定定理、面面垂直判定定理以及利用空间向量求二面角,考查基本分析论证与求解能力,属中档题.18、(Ⅰ),;(Ⅱ)存在实数,符合题意.【解析】
(Ⅰ)由题意可整理为,从而代入,即可求,的值;(Ⅱ)当时和时,可得到一组、的值,于是假设该式成立,用数学归纳法证明即可.【详解】(Ⅰ)因为,整理得,由,代入得,.(Ⅱ)假设存在实数、,使得对任意正整数恒成立.当时,,①当时,,②由①②解得:,.下面用数学归纳法证明:存在实数,,使对任意正整数恒成立.(1)当时,结论显然成立.(2)当时,假设存在,,使得成立,那么,当时,.即当时,存在,,使得成立.由(1)(2)得:存在实数,,使对任意正整数恒成立.【点睛】本题主要考查数学归纳法在数列中的应用,意在考查学生的计算能力,分析能力,逻辑推理能力,比较综合,难度较大.19、(Ⅰ)的极大值,极小值(Ⅱ)【解析】试题分析:(Ⅰ)由题意求得,根据导函数的符号判断出函数的单调性,结合单调性可得函数的极值情况.(Ⅱ)结合(Ⅰ)中的结论可知,函数在区间上单调递减,在区间上单调递增,故,再根据和的大小求出即可.试题解析:(Ⅰ)∵点在函数的图象上,∴,解得,∴,∴,当或时,,单调递增;当时,,单调递减.∴当时,有极大值,且极大值为,当时,有极小值,且极小值为.(Ⅱ)由(I)可得:函数在区间上单调递减,在区间上单调递增.∴,又,,∴.20、(1);(2)见解析【解析】
(1)将情况分为甲租天以上,乙租不超过天;甲租天,乙租天两种情况;分别在两种情况下利用独立事件概率公式可求得对应概率,加和得到结果;(2)首先确定所有可能的取值,再求得每个取值所对应的概率,从而得到分布列;利用数学期望计算公式求得期望.【详解】(1)若甲所付租车费比乙多,则分为:甲租天以上,乙租不超过天;甲租天,乙租天两种情况①甲租天以上,乙租不超过天的概率为:②
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2022年赣州市六年级语文第五单元考试试卷
- 生态修复工程2025年生态系统服务功能评估与生态系统服务评估技术产业竞争力提升
- 2022年阿拉善盟小学三年级语文第三单元考试试卷
- 二零二五年度商业空间租赁权转让与租后服务合同
- 淮北市高三模拟数学试卷
- 2025年铁路运输大件货物安全监督与保障合同
- 2025年度定制化机械部件买卖合同
- 二零二五年绿色环保吊车租赁服务约定书
- 2025版高品质钢板定制加工与出口合同
- 二零二五年国际贸易结算服务合同规范
- 2024沈阳航空航天大学辅导员招聘笔试真题
- 企业财务管理制度10篇
- 2025年保安员考试题库
- 2025年河南省中考英语真题 (解析版)
- 护理部对护士的培训内容
- 风电变流器市场发展分析及行业投资战略研究报告2025-2028版
- 品牌管理部组织架构及岗位职责
- 2025品牌屋模型·参考模板
- 2025至2030中国可视化软件行业发展趋势分析与未来投资战略咨询研究报告
- 火灾应急救护知识
- 民警培训宿舍管理制度
评论
0/150
提交评论