四川省广元市万达中学、八二一中学2023年数学高二下期末质量检测模拟试题含解析_第1页
四川省广元市万达中学、八二一中学2023年数学高二下期末质量检测模拟试题含解析_第2页
四川省广元市万达中学、八二一中学2023年数学高二下期末质量检测模拟试题含解析_第3页
四川省广元市万达中学、八二一中学2023年数学高二下期末质量检测模拟试题含解析_第4页
四川省广元市万达中学、八二一中学2023年数学高二下期末质量检测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023高二下数学模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设X~N(1,σ2),其正态分布密度曲线如图所示,且P(X≥3)=0.0228,那么向正方形OABC中随机投掷10000个点,则落入阴影部分的点的个数的估计值为()(附:随机变量ξ服从正态分布N(μ,σ2),则P(μ-σ<ξ<μ+σ)=68.26%,P(μ-2σ<ξ<μ+2σ)=95.44%)A.6038 B.6587 C.7028 D.75392.在平面直角坐标系中,,,,,若,,则的最小值是()A.B.C.D.3.对于实数,,若或,则是的()A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件4.下列求导运算正确的是()A. B.C. D.5.命题若,则,是的逆命题,则()A.真,真 B.真,假 C.假,真 D.假,假6.已知函数在区间上为单调函数,且,则函数的解析式为()A. B.C. D.7.某大学推荐7名男生和5名女生参加某企业的暑期兼职,该企业欲在这12人中随机挑选3人从事产品的销售工作,记抽到的男生人数为,则()A.2 B. C. D.8.已知三角形的面积是,,,则b等于()A.1 B.2或1 C.5或1 D.或19.已知是等差数列的前n项和,且,则的通项公式可能是()A. B. C. D.10.若实数满足约束条件,且最大值为1,则的最大值为()A. B. C. D.11.已知向量,,若,则()A. B.1 C.2 D.12.如图,平面与平面所成的二面角是,是平面内的一条动直线,,则直线与所成角的正弦值的取值范围是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知直线l的普通方程为x+y+1=0,点P是曲线上的任意一点,则点P到直线l的距离的最大值为______.14.记(为正奇数),则除以88的余数为______15.人并排站成一行,其中甲、乙两人必须相邻,那么不同的排法有__________种.(用数学作答)16.已知集合,,,若从这三个集合中各取一个元素构成空间直角坐标系中点的坐标,则确定不同点的个数为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)(选修4-4.坐标系与参数方程)在直角坐标系中,曲线的参数方程是(为参数),以该直角坐标系的原点为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为.(1)写出曲线的普通方程和直线的直角坐标方程;(2)设点,直线与曲线相交于两点,且,求实数的值.18.(12分)已知函数,(为自然对数的底数,).(1)判断曲线在点处的切线与曲线的公共点个数;(2)当时,若函数有两个零点,求的取值范围.19.(12分)在中,角所对的边分别是且.(1)求角A;(2)若为钝角三角形,且,当时,求的取值范围.20.(12分)已知函数.(Ⅰ)若函数在区间和上各有一个零点,求的取值范围;(Ⅱ)若在区间上恒成立,求的取值范围.21.(12分)已知函数,曲线在处的切线方程为.(1)求实数的值;(2)求函数在的最值.22.(10分)在中,角的对边分别为,且.(1)求;(2)若,求的面积.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】分析:求出,即可得出结论.详解:由题意得,P(X≤-1)=P(X≥3)=0.0228,∴P(-1<X<3)=1-0.0228×2=0.9544,∴1-2σ=-1,σ=1,∴P(0≤X≤1)=P(0≤X≤2)=0.3413,故估计的个数为10000×(1-0.3413)=6587,故选:B.点睛:本题考查正态分布曲线的特点及曲线所表示的意义,考查正态分布中两个量和的应用,考查曲线的对称性.2、A【解析】试题分析:设P(x,y),则,,所以,所以P点轨迹为,根据条件,可以整理得到:,所以M,Q,N三点共线,即Q点在直线MN上,由M(8,0),N(0,8)可知Q点在直线上运动,所以的最小值问题转化为圆上点到直线的最小距离,即圆心到直线的距离减去圆的半径,。考点:1.平面向量的应用;2.直线与圆的位置关系。3、B【解析】

分别判断充分性和必要性,得到答案.【详解】取此时不充分若或等价于且,易知成立,必要性故答案选B【点睛】本题考查了充分必要条件,举出反例和转化为逆否命题都可以简化运算.4、B【解析】

利用导数运算公式,对每个选项进行一一判断.【详解】对A,因为,故A错;对B,,故B正确;对C,,故C错;对D,,故D错.所以本题选B.【点睛】熟记导数公式,特别是复合函数的求导,即,不能漏了前面的负号.5、C【解析】由题意,,所以,得,所以命题为假命题,又因为是的逆命题,所以命题:若,则为真命题,故选C.6、C【解析】

由函数在区间上为单调函数,得周期,,得出图像关于对称,可求出,,得出函数的对称轴,结合对称中心和周期的范围,求出周期,即可求解.【详解】设的最小正周期为,在区间上具有单调性,则,即,由知,有对称中心,所以.由,且,所以有对称轴.故.解得,于是,解得,所以.故选:C【点睛】本题考查正弦函数图象的对称性、单调性和周期性及其求法,属于中档题.7、B【解析】

依题意可得,X的可能取值为0,1,2,3,分别求出概率,再由期望公式即可求出.【详解】依题意可得,X的可能取值为0,1,2,3,则,,,,所以.【点睛】本题主要考查离散型随机变量期望的求法.8、D【解析】

由三角形面积公式,计算可得的值,即可得B的值,结合余弦定理计算可得答案.【详解】根据题意:三角形的面积是,即,又由,则则或,若则此时则;若,则,此时则;故或.故选:D.【点睛】本题考查三角形的面积公式,考查余弦定理在解三角形中的应用,难度较易.9、D【解析】

由等差数列的求和公式,转化为,故,分析即得解【详解】由题意,等差数列,且可得故所以当时,则的通项公式可能是故选:D【点睛】本题考查了等差数列的通项公式和求和公式,考查了学生概念理解,数学运算的能力,属于中档题.10、A【解析】

首先画出可行域,根据目标函数的几何意义得到,再利用基本不等式的性质即可得到的最大值.【详解】由题知不等式组表示的可行域如下图所示:目标函数转化为,由图易得,直线在时,轴截距最大.所以.因为,即,当且仅当,即,时,取“”.故选:A【点睛】本题主要考查基本不等式求最值问题,同时考查了线性规划,属于中档题.11、B【解析】

由,,表示出,再由,即可得出结果.【详解】因为,,所以,又,所以,即,解得.故选B【点睛】本题主要考查向量数量积的坐标运算,熟记运算法则即可,属于基础题型.12、B【解析】

假定ABCD和BCEF均为正方形,过D作,可证平面BCEF,进而可得直线BD与平面BCEF所成的角正弦值,即直线与所成角的正弦值的最小值,当直线与异面垂直时,所成角的正弦值最大.【详解】过D作,垂足为G,假定ABCD和BCEF均为正方形,且边长为1则平面CDG,故又,平面BCEF故直线BD在平面BCEF内的射影为BG,由已知可得,则以直线BD与平面BCEF所成的角正弦值,所以直线BD与平面BCEF内直线所成的角正弦值最小为,而直线与所成角最大为(异面垂直),即最大正弦值为1.故选:B【点睛】本题考查了立体几何中线面角,面面角找法,考查了转化思想,属于难题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

根据曲线的参数方程,设,再由点到直线的距离以及三角函数的性质,即可求解.【详解】由题意,设,则到直线的距离,故答案为.【点睛】本题主要考查了曲线的参数方程的应用,其中解答中根据曲线的参数方程设出点的坐标,利用点到直线的距离公式和三角函数的性质求解是解答的关键,着重考查了推理与运算能力,属于基础题.14、87【解析】

由组合数的性质知:,由此能求出结果.【详解】解:由组合数的性质知:则除以88的余数为.故答案为:.【点睛】本题考查余数的求法,是中档题,解题时要认真审题,注意组合数性质及二项式定理的合理运用.15、240【解析】分析:甲、乙两人必须相邻,利用捆绑法与其余的人全排即可.详解:甲乙相邻全排列种排法,利用捆绑法与其余的人全排有种排法,共有,故答案为.点睛:常见排列数的求法为:(1)相邻问题采取“捆绑法”;(2)不相邻问题采取“插空法”;(3)有限制元素采取“优先法”;(4)特殊顺序问题,先让所有元素全排列,然后除以有限制元素的全排列数.16、.【解析】

由组合数的性质得出,先求出无任何限制条件下所确定的点的个数,然后考虑坐标中有两个相同的数的点的个数,将两数作差可得出结果.【详解】由组合数的性质得出,不考虑任何限制条件下不同点的个数为,由于,坐标中同时含和的点的个数为,综上所述:所求点的个数为,故答案为.【点睛】本题考查排列组合思想的应用,常用的就是分类讨论和分步骤处理,本题中利用总体淘汰法,可简化分类讨论,考查分析问题和解决问题的能力,属于中等题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),(2)或或.【解析】试题分析:(1)写普通方程,则只需消去参数和根据极坐标变换公式即可轻松求得故曲线的普通方程为.直线的直角坐标方程为.(2)由题可知,所以联立和得,代入韦达定理即得答案解析:(1),故曲线的普通方程为.直线的直角坐标方程为.(2)直线的参数方程可以写为(为参数).设两点对应的参数分别为,将直线的参数方程代入曲线的普通方程可以得到,所以或,解得或或.18、(1)见解析(2)【解析】分析:(1)根据导数的几何意义可得切线方程,然后根据切线方程与联立得到的方程组的解的个数可得结论.(2)由题意求得的解析式,然后通过分离参数,并结合函数的图象可得所求的范围.详解:(1)∵,∴,∴.又,∴曲线在点处的切线方程为.由得.故,所以当,即或时,切线与曲线有两个公共点;当,即或时,切线与曲线有一个公共点;当,即时,切线与曲线没有公共点.(2)由题意得,由,得,设,则.又,所以当时,单调递减;当时,单调递增.所以.又,,结合函数图象可得,当时,方程有两个不同的实数根,故当时,函数有两个零点.点睛:函数零点个数(方程根的个数、两函数图象公共点的个数)的判断方法:(1)结合零点存在性定理,利用函数的性质确定函数零点个数;(2)构造合适的函数,判断出函数的单调性,利用函数图象公共点的个数判断方程根的个数或函数零点个数.19、(1);(2).【解析】

(1)由正弦定理化简可得,再结合余弦定理即可得到角;(2)结合(1)可得,利用正弦定理把求的范围转化为求,结合三角形的性质可得,由正弦函数的图形即可得到的范围,从而得到的取值范围.【详解】(1)因为由正弦定理得:,由余弦定理可知:所以又因为,故.(2)由(1)知,又,所以,且,则因为△ABC为钝角三角形且,则,所以,结合图象可知,,所以.【点睛】本题考查正弦定理与余弦定理的综合应用,考查学生的转化能力与计算能力,属于中档题.20、(1);(2).【解析】

(1)根据二次函数图象以及零点存在定理列不等式,解得的取值范围,(2)根据对称轴与定义区间位置关系分类讨论满足题意的条件,解不等式得的取值范围.【详解】(Ⅰ)因为函数在区间和上各有一个零点,所以有解得所以的取值范围为:(Ⅱ)要使在区间上恒成立,需满足或或解得:无解或或无解所以所以的取值范围为:.【点睛】研究二次函数最值或单调性,一般根据对称轴与定义区间位置关系进行分类讨论;研究二次方程在定义区间有解,一般从开口方向,对称轴位置,判别式正负,以及区间端点函数值正负四个方面进行考虑.21、(1);(2),【解析】

(1),可得到,即可求出的值;(2)由可判断的单调性,从而可求出函数在的最值.【详解】

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论