




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某种种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X,则X的数学期望为A.100 B.200 C.300 D.4002.已知命题,则命题的否定为()A. B.C. D.3.某工厂生产的零件外直径(单位:)服从正态分布,今从该厂上、下午生产的零件中各随机取出一个,测得其外直径分别为和,则可认为()A.上午生产情况异常,下午生产情况正常 B.上午生产情况正常,下午生产情况异常C.上、下午生产情况均正常 D.上、下午生产情况均异常4.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A.10 B.12C.14 D.165.已知,均为正实数,且,则的最小值为()A.20 B.24 C.28 D.326.若f(x)=ax2+bx+c(c≠0)是偶函数,则g(x)=ax3+bx2+cx()A.是奇函数 B.是偶函数C.既是奇函数又是偶函数D.既不是奇函数又不是偶函数7.已知椭圆的短轴长为2,上顶点为,左顶点为,分别是椭圆的左、右焦点,且的面积为,点为椭圆上的任意一点,则的取值范围为()A. B. C. D.8.已知椭圆与双曲线有相同的焦点,点是两曲线的一个公共点,且,若椭圆离心率,则双曲线的离心率()A. B. C.3 D.49.若函数f(x)的导函数的图像关于原点对称,则函数f(x)的解析式可能是()A.f(x)=3cosx B.f(x)=x310.已知双曲线:1,左右焦点分别为,,过的直线交双曲线左支于,两点,则的最小值为()A. B.11 C.12 D.1611.若直线l不平行于平面α,且l⊄α,则()A.α内所有直线与l异面B.α内只存在有限条直线与l共面C.α内存在唯一的直线与l平行D.α内存在无数条直线与l相交12.已知复z=-1-2i(1+i)2,则复数zA.-34+14i二、填空题:本题共4小题,每小题5分,共20分。13.在极坐标系中,点(2,π6)到直线ρsinθ=2的距离等于14.已知向量满足,,的夹角为,则__________.15.的展开式中常数项为__________.(有数字填写答案)16.椭圆(为参数)的焦距为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设复数(其中),.(Ⅰ)若是实数,求的值;(Ⅱ)若是纯虚数,求.18.(12分)随着“互联网+交通”模式的迅猛发展,“共享助力单车”在很多城市相继出现.某“共享助力单车”运营公司为了解某地区用户对该公司所提供的服务的满意度,随机调查了100名用户,得到用户的满意度评分,现将评分分为5组,如下表:组别一二三四五满意度评分[0,2)[2,4)[4,6)[6,8)[8,10]频数510a3216频率0.05b0.37c0.16(1)求表格中的a,b,c的值;(2)估计用户的满意度评分的平均数;(3)若从这100名用户中随机抽取25人,估计满意度评分低于6分的人数为多少?19.(12分)已知函数.(1)求不等式的解集;(2)若对于一切,均有成立,求实数的取值范围.20.(12分)时下,租车自驾游已经比较流行了.某租车点的收费标准为:不超过天收费元,超过天的部分每天收费元(不足天按天计算).甲、乙两人要到该租车点租车自驾到某景区游览,他们不超过天还车的概率分别为和,天以上且不超过天还车的概率分别为和,两人租车都不会超过天.(1)求甲所付租车费比乙多的概率;(2)设甲、乙两人所付的租车费之和为随机变量,求的分布列和数学期望.21.(12分)某种设备的使用年限(年)和维修费用(万元),有以下的统计数据:34562.5344.5(Ⅰ)画出上表数据的散点图;(Ⅱ)请根据上表提供的数据,求出关于的线性回归方程;(Ⅲ)估计使用年限为10年,维修费用是多少万元?(附:线性回归方程中,其中,).22.(10分)已知等比数列的前项和为,且,.(1)求数列的通项公式;(2)若,,求数列的前项和.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
试题分析:设没有发芽的种子数为,则,,所以考点:二项分布【方法点睛】一般利用离散型随机变量的数学期望的定义求期望的值,对于有些实际问题中的随机变量,如果能够断定它服从某常见的典型分布(如二项分布X~B(n,p)),则此随机变量的期望可直接利用这种典型分布的期望公式(E(X)=np)求得.因此,应熟记常见的典型分布的期望公式,可加快解题速度.2、D【解析】分析:根据全称命题的否定是特称命题即可得结果.详解:因为全称命题的否定是特称命题,所以命题的否定为,故选D.点睛:本题主要考查全称命题的否定,属于简单题.全称命题与特称命题的否定与命题的否定有一定的区别,否定全称命题和特称命题时,一是要改写量词,全称量词改写为存在量词、存在量词改写为全称量词;二是要否定结论,而一般命题的否定只需直接否定结论即可.3、B【解析】
根据生产的零件外直径符合正态分布,根据原则,写出零件大多数直径所在的范围,把所得的范围同两个零件的外直径进行比较,得到结论.【详解】因为零件外直径,所以根据原则,在与之外时为异常,因为上、下午生产的零件中随机取出一个,,,所以下午生产的产品异常,上午的正常,故选B.【点睛】该题考查的是有关正态分布的问题,涉及到的知识点有正态分布的原则,属于简单题目.4、B【解析】由题意该几何体的直观图是由一个三棱锥和三棱柱构成,如下图,则该几何体各面内只有两个相同的梯形,则这些梯形的面积之和为,故选B.点睛:三视图往往与几何体的体积、表面积以及空间线面关系、角、距离等问题相结合,解决此类问题的关键是由三视图准确确定空间几何体的形状及其结构特征并且熟悉常见几何体的三视图.5、A【解析】分析:由已知条件构造基本不等式模型即可得出.详解:均为正实数,且,则当且仅当时取等号.的最小值为20.故选A.点睛:本题考查了基本不等式的性质,“一正、二定、三相等”.6、A【解析】若f(x)=ax2+bx+c(c≠0)是偶函数,则,则是奇函数,选A.7、D【解析】分析:由得椭圆的短轴长为,可得,,可得,从而可得结果.详解:由得椭圆的短轴长为,,解得,,设,则,,即,,故选D.点睛:本题考查题意的简单性质,题意的定义的有意义,属于中档题.求解与椭圆性质有关的问题时要结合图形进行分析,既使不画出图形,思考时也要联想到图形,当涉及顶点、焦点、长轴、短轴、等椭圆的基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系.8、B【解析】
设,,由椭圆和双曲线的定义,解方程可得,,再由余弦定理,可得,与的关系,结合离心率公式,可得,的关系,计算可得所求值.【详解】设,,为第一象限的交点,由椭圆和双曲线的定义可得,,解得,,在三角形中,,可得,即有,可得,即为,由,可得,故选.【点睛】本题考查椭圆和双曲线的定义和性质,主要是离心率,考查解三角形的余弦定理,考查化简整理的运算能力,属于中档题.9、A【解析】
求出导函数,导函数为奇函数的符合题意.【详解】A中f'(x)=-3sinx为奇函数,B中f'(x)=3x2+2x非奇非偶函数,C中f'(x)=2故选A.【点睛】本题考查导数的运算,考查函数的奇偶性.解题关键是掌握奇函数的图象关于原点对称这个性质.10、B【解析】
根据双曲线的定义,得到,再根据对称性得到最小值,从而得到的最小值.【详解】根据双曲线的标准方程,得到,根据双曲线的定义可得,,所以得到,根据对称性可得当为双曲线的通径时,最小.此时,所以的最小值为.故选:B.【点睛】本题考查双曲线的定义求线段和的最小值,双曲线的通径,考查化归与转化思想,属于中档题.11、D【解析】
通过条件判断直线l与平面α相交,于是可以判断ABCD的正误.【详解】根据直线l不平行于平面α,且l⊄α可知直线l与平面α相交,于是ABC错误,故选D.【点睛】本题主要考查直线与平面的位置关系,直线与直线的位置关系,难度不大.12、C【解析】∵z=-1-2i二、填空题:本题共4小题,每小题5分,共20分。13、1【解析】试题分析:在极坐标系中,点(2,π6)对应直角坐标系中坐标(3考点:极坐标化直角坐标14、【解析】
先计算,再由展开计算即可得解.【详解】由,,的夹角为,得.所以.故答案为:.【点睛】本题主要考查了利用向量的数量积计算向量的模长,属于基础题.15、16【解析】展开式的次项与形成常数项,展开式的常数项和1形成常数项,所以展开式的次项为,常数项为1,所以的展开式中常数项为15+1=1616、1【解析】
根据题意,将椭圆的参数方程变形为普通方程,据此可得a、b的值,计算可得c的值,由椭圆的几何性质分析可得答案.【详解】解:根据题意,椭圆的参数方程为(θ为参数),则其标准方程为y1=1,其中a,b=1,则c1,则椭圆的焦距1c=1;故答案为:1.【点睛】本题考查椭圆的参数方程,椭圆简单的几何性质,关键是将椭圆的参数方程变形为普通方程.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)22+4i(Ⅱ)【解析】
(Ⅰ)利用复数z1+z2是实数,求得a=4,之后应用复数乘法运算法则即可得出结果;(Ⅱ)利用复数的除法运算法则,求得,利用复数是纯虚数的条件求得的值,之后应用复数模的公式求得结果【详解】(Ⅰ)∵z1+z2=5+(a-4)i是实数,∴a=4,z1=2+4i,∴z1z2=(2+4i)(3-4i)=22+4i;(Ⅱ)∵是纯虚数,∴,故.【点睛】该题考查的是有关复数的问题,涉及到的知识点有复数是实数的条件,复数的乘法运算法则,复数的除法运算,复数的模,属于简单题目.18、(1),,;(2)5.88;(3)13.【解析】
(1)由频数分布表,即可求解表格中的的值;(2)由频数分布表,即可估计用户的满意度平分的平均数;(3)从这100名用户中随机抽取25人,由频数分布表能估计满意度平分低于6分的人数.【详解】(1)由频数分布表得,解得,,;(2)估计用户的满意度评分的平均数为:.(3)从这100名用户中随机抽取25人,估计满足一度评分低于6分的人数为:人.【点睛】本题主要考查了频数分布表的应用,以及平均数、频数的求解,其中解答中熟记频数分布表的性质,合理准确计算是解答的关键,着重考查了推理与计算能力,以及分析问题和解答问题的能力,属于基础题.19、(1);(2).【解析】分析:(1)直接解一元二次不等式即可;(2)将不等式转化为恒成立问题,分离参数,借助基本不等式得到的取值范围.详解:(1)∵,∴,∴,∴的解集为;(2)∵,∴当时,恒成立,∴,∴对一切均有成立,又,当且仅当时,等号成立.∴实数的取值范围为.点睛:本题考查了一元二次不等式的解法,以及将不等式转化为恒成立问题,分离参数,基本不等式的应用.20、(1);(2)见解析【解析】
(1)将情况分为甲租天以上,乙租不超过天;甲租天,乙租天两种情况;分别在两种情况下利用独立事件概率公式可求得对应概率,加和得到结果;(2)首先确定所有可能的取值,再求得每个取值所对应的概率,从而得到分布列;利用数学期望计算公式求得期望.【详解】(1)若甲所付租车费比乙多,则分为:甲租天以上,乙租不超过天;甲租天,乙租天两种情况①甲租天以上,乙租不超过天的概率为:②甲租天,乙租天的概率为:甲所付租车费比乙多的概率为:(2)甲、乙两人所付的租车费之和所有可能的取值为:则;;;;的分布列为:数学期望【点睛】本题考查独立事件概率的求解、离散型随机变量的分布列与数学期望的求解,涉及到和事件、积事件概率的求解,考查学生的运算和求解能力,属于常考题型.21、(1)详见解析;(2);(3)当时,万元.【解析】(1)直接将四个点在平
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 美美少年计划面试题及答案
- 肺炎治疗与康复
- 幼儿园运动会方案培训
- 2025年中国女式牛仔裤行业市场全景分析及前景机遇研判报告
- 4S店执行力培训
- 低血钾症状外科护理学
- 教育培训班教师工作总结
- CNAS认证实施流程
- 财务会计人员劳动合同续签与终止范本
- 电信礼仪培训
- 天津大学年《物理化学》期末试题及答案
- 2022年脱硝试题库
- 《幼儿园中班第一学期家长会》 PPT课件
- 全国202X年4月自学考试公文写作与处理试题和答案解析.doc
- 杜邦安全理念课件
- 《房屋面积测算技术规程》DGJ32TJ131-2011
- 管道无损检测施工专项方案
- 酒店工程部考核表
- 槽钢桩支护施工方案
- 土石坝剖面图绘制12.28
- 水利水电工程防渗墙工程质量检测
评论
0/150
提交评论