四川省凉山2023年数学高二下期末复习检测试题含解析_第1页
四川省凉山2023年数学高二下期末复习检测试题含解析_第2页
四川省凉山2023年数学高二下期末复习检测试题含解析_第3页
四川省凉山2023年数学高二下期末复习检测试题含解析_第4页
四川省凉山2023年数学高二下期末复习检测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023高二下数学模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.刘徽是我国魏晋时期杰出的数学家,他采用了以直代曲、无限趋近、内夹外逼的思想,创立了割圆术,即从半径为1尺的圆内接正六边形开始计算面积,如图是一个圆内接正六边形,若向圆内随机投掷一点,则该点落在正六边形内的概率为()A. B. C. D.2.已知m∈R,若函数f(x)=1x+1-mx-m-3(-1<x⩽0)A.-94,-2 B.(-93.以下数表的构造思路源于我国南宋数学家杨辉所著的《详解九章算术》一书中的“杨辉三角形”.该表由若干行数字组成,从第二行起,每一行中的数字均等于其“肩上”两数之和,表中最后一行仅有一个数,则这个数为()A. B.C. D.4.过双曲线的一个焦点作垂直于实轴的直线,交双曲线于,是另一焦点,若,则双曲线的离心率等于()A. B. C. D.5.甲射击时命中目标的概率为,乙射击时命中目标的概率为,则甲乙两人各自射击同一目标一次,则该目标被击中的概率为()A. B. C. D.6.设,是抛物线上两点,抛物线的准线与轴交于点,已知弦的中点的横坐标为3,记直线和的斜率分别为和,则的最小值为()A. B.2 C. D.17.已知函数的导函数为,且满足,则()A. B.1 C.-1 D.8.点是曲线上任意一点,则点到直线的距离的最小值是()A.1 B. C.2 D.9.0πsinA.2 B.0 C.-2 D.110.已知,则()A. B. C. D.11.2019年4月,北京世界园艺博览会开幕,为了保障园艺博览会安全顺利地进行,某部门将5个安保小组全部安排到指定的三个不同区域内值勤,则每个区域至少有一个安保小组的排法有()A.150种 B.240种 C.300种 D.360种12.若不等式2xlnx≥-x2+ax-3对x∈(0,+∞)恒成立,则实数a的取值范围是()A.(-∞,0) B.(-∞,4] C.(0,+∞) D.[4,+∞)二、填空题:本题共4小题,每小题5分,共20分。13.设函数,且函数为奇函数,则________.14.若函数为偶函数,则.15.已知复数是虚数,则复数的模等于__________.16..三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设函数.(1)讨论的单调性;(2)证明:当时,.18.(12分)已知函数.(1)讨论函数的单调性;(2)当时,,求的取值范围.19.(12分)已知定义域为的函数,是奇函数.(1)求,的值;(2)若对任意的,不等式恒成立,求实数的取值范围.20.(12分)已知的展开式中第五项的系数与第三项的系数之比是.求:(1)展开式中各项系数的和;(2)展开式中系数最大的项.21.(12分)端午节吃粽子是我国的传统习俗,设一盘中装有个粽子,其中豆沙粽个,肉粽个,白粽个,这三种粽子的外观完全相同,从中任意选取个.()求三种粽子各取到个的概率.()设表示取到的豆沙粽个数,求的分布列与数学期望.22.(10分)已知函数,其中为实常数.(1)若当时,在区间上的最大值为,求的值;(2)对任意不同两点,,设直线的斜率为,若恒成立,求的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】

由面积公式分别计算出正六边形与圆的面积,由几何概型的概率计算公式即可得到答案【详解】由图可知:,故选D.【点睛】本题考查几何概型,属于基础题。2、B【解析】

通过参变分离、换元法,把函数f(x)的零点个数转化成直线y=m与抛物线的交点个数.【详解】∵-1<x≤0,∴0<x+1≤1,∵函数f(x)在-1<x≤0有两个不同零点⇔方程m=(1x+1)2∴m=t2-3t在t≥1有且仅有两个不同的根⇔y=m∴-【点睛】通过换元把复杂的分式函数转化为熟知的二次函数,但要注意换元后新元的取值范围.3、B【解析】试题分析:由题意得,数表的每一行都是等差数列,且第一行公差为,第二行公差为,第三行公差为,第行公差为,第一行的第一个数为;第二行的第一个数列为;第三行的第一个数为;;第行的第一个数为,第行只有,故选B.考点:数列的综合应用.【方法点晴】本题主要考查了数列的综合问题,其中解答中涉及到等差数列的概念与通项公式,等比数列的通项公式等知识点应用,着重考查了学生分析问题和解答问题的能力,以及学生的转化与化归思想的应用,本题的解答中正确理解数表的结构,探究数表中数列的规律是解答的关键,试题有一定的难度,属于中档试题.4、B【解析】

根据对称性知是以点为直角顶点,且,可得,利用双曲线的定义得出,再利用锐角三角函数的定义可求出双曲线的离心率的值.【详解】由双曲线的对称性可知,是以点为直角顶点,且,则,由双曲线的定义可得,在中,,,故选B.【点睛】本题考查双曲线的离心率的求解,要充分研究双曲线的几何性质,在遇到焦点时,善于利用双曲线的定义来求解,考查逻辑推理能力和计算能力,属于中等题.5、D【解析】

记事件甲乙两人各自射击同一目标一次,该目标被击中,利用独立事件的概率乘法公式计算出事件的对立事件的概率,再利用对立事件的概率公式可得出事件的概率.【详解】记事件甲乙两人各自射击同一目标一次,该目标被击中,则事件甲乙两人各自射击同一目标一次,两人都未击中目标,由独立事件的概率乘法公式得,,故选D.【点睛】本题考查独立事件的概率乘法公式,解题时要弄清楚各事件之间的关系,可以采用分类讨论,本题采用对立事件求解,可简化分类讨论,属于中等题.6、D【解析】

设,运用点差法和直线的斜率公式和中点坐标公式,可得,再由基本不等式可得所求最小值.【详解】设,可得,相减可得,可得,又由,所以,则,当且仅当时取等号,即的最小值为.故选:D.【点睛】本题主要考查了抛物线的方程和性质,考查直线的斜率公式和点差法的运用,以及中点坐标公式,考查方程思想和运算能力,属于基础题.7、C【解析】试题分析:∵函数的导函数为,且满足,,∴,把代入可得,解得,故选C.考点:(1)导数的乘法与除法法则;(2)导数的加法与减法法则.8、B【解析】,则,即,所以,故选B.9、A【解析】

根据的定积分的计算法则计算即可.【详解】0πsinxdx=(-cos故选:A.【点睛】本题考查了定积分的计算,关键是求出原函数,属于基础题.10、B【解析】

由题意首先求得的值,然后利用二倍角公式整理计算即可求得最终结果.【详解】由题意结合诱导公式可得:,则.本题选择B选项.【点睛】本题主要考查诱导公式、二倍角公式的应用,意在考查学生的转化能力和计算求解能力.11、A【解析】

根据题意,需要将5个安保小组分成三组,分析可得有2种分组方法:按照1、1、3分组或按照1、2、2分组,求出每一种情况的分组方法数目,由加法计数原理计算可得答案.【详解】根据题意,三个区域至少有一个安保小组,所以可以把5个安保小组分成三组,有两种分法:按照1、1、3分组或按照1、2、2分组;若按照1、1、3分组,共有种分组方法;若按照1、2、2分组,共有种分组方法,根据分类计数原理知共有60+90=150种分组方法.故选:A.【点睛】本题考查排列、组合及简单计数问题,本题属于分组再分配问题,根据题意分析可分组方法进行分组再分配,按照分类计数原理相加即可,属于简单题.12、B【解析】

分析:由已知条件推导出a≤x+2lnx+3x,x>0,令y=x+2lnx+3【详解】详解:由题意2xlnx≥-x2所以a≤x+2lnx+3x设y=x+2lnx+3由y'=0,得当x∈(0,1)时,y'<0,当x∈(1,+∞)时,所以x=1时,ymin=1+0+3=4,所以即实数a的取值范围是(-∞,4].点睛:利用导数研究不等式恒成立或解不等式问题,通常首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造函数,直接把问题转化为函数的最值问题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

根据奇函数求值.【详解】因为为奇函数令,故.【点睛】本题考查根据函数奇偶性求值,属于基础题.14、1【解析】试题分析:由函数为偶函数函数为奇函数,.考点:函数的奇偶性.【方法点晴】本题考查导函数的奇偶性以及逻辑思维能力、等价转化能力、运算求解能力、特殊与一般思想、数形结合思想与转化思想,具有一定的综合性和灵活性,属于较难题型.首先利用转化思想,将函数为偶函数转化为函数为奇函数,然后再利用特殊与一般思想,取.15、【解析】

先根据复数除法计算出,然后根据复数模的计算公式计算出的模即可.【详解】因为,所以,所以.故答案为:.【点睛】本题考查复数的除法计算以及复数模的求解,难度较易.已知复数,所以.16、【解析】试题分析:考点:定积分三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)见解析【解析】

(1)先求函数定义域,由导数大于0,得增区间;导数小于0,得减区间;(2)由题意可得即证lnx<x﹣1<xlnx.由(1)的单调性可得lnx<x﹣1;设F(x)=xlnx﹣x+1,x>1,求出单调性,即可得到x﹣1<xlnx成立;【详解】(1)由题设,的定义域为,,令,解得.当时,,单调递增;当时,,单调递减.(2)证明:当x∈(1,+∞)时,,即为lnx<x﹣1<xlnx.由(1)可得f(x)=lnx﹣x+1在(1,+∞)递减,可得f(x)<f(1)=0,即有lnx<x﹣1;设F(x)=xlnx﹣x+1,x>1,F′(x)=1+lnx﹣1=lnx,当x>1时,F′(x)>0,可得F(x)递增,即有F(x)>F(1)=0,即有xlnx>x﹣1,则原不等式成立;【点睛】本题考查导数的运用,考查利用导数求函数单调区间和极值、最值,考查不等式的证明,注意运用构造函数法,求出导数判断单调性,考查推理和运算能力,属于中档题.18、(1)详见解析(2)或【解析】

(1)将函数求导并化简,对分成两种情况,讨论函数的单调性.(2)原不等式即(),当时,上述不等式显然成立.当时,将不等式变为,构造函数,利用导数研究函数的单调性,由此求得的取值范围.【详解】解:(1).①若,当时,,在上单调递增;当时,,在上单调递减.②若,当时,,在上单调递减;当时,,在上单调递增.∴当时,在上单调递增,在上单调递减;当时,在上单调递减,在上单调递增.(2)(),当时,上不等式成立,满足题设条件;当时,,等价于,设,则,设(),则,∴在上单调递减,得.①当,即时,得,,∴在上单调递减,得,满足题设条件;②当,即时,,而,∴,,又单调递减,∴当,,得,∴在上单调递增,得,不满足题设条件;综上所述,或.【点睛】本小题主要考查利用导数求解函数参数的函数单调性问题,考查利用导数求解含有参数不等式恒成立问题.对函数求导后,由于导函数含有参数,故需要对参数进行分类讨论,分类讨论标准的制定,往往要根据导函数的情况来作出选择,目标是分类后可以画出导函数图像,进而得出导数取得正、负的区间,从而得到函数的单调区间.19、(1);(2)【解析】

(1)先由求出,然后由求出(2)由得在上为减函数,然后将不等式化为即可.【详解】(1)因为是上的奇函数,所以,即,解得.从而有.又由知,解得.经检验,当时,,满足题意(2)由(1)知,由上式易知在上为减函数,又因为是奇函数,从而不等式等价于.因为是上的减函数,由上式推得.即对一切有,从而,解得.【点睛】本题主要考查的是利用函数的奇偶性和单调性解不等式,较为典型.20、(1);(2)和.【解析】分析:(1)由条件求得,令,可得展开式的各项系数的和.(2)设展开式中的第项、第项、第项的系数分别为,,.若第项的系数最大,则,解不等式即可.详解:展开式的通项为.依题意,,得.(1)令,则各项系数的和为.(2)设展开式中的第项、第项、第项的系数分别为,,.若第项的系数最大,则,得.于是系数最大的项是和.点睛:本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于中档题.21、(1);(2)见解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论