四川省眉山市东坡区多悦高级中学校2022-2023学年数学高二下期末预测试题含解析_第1页
四川省眉山市东坡区多悦高级中学校2022-2023学年数学高二下期末预测试题含解析_第2页
四川省眉山市东坡区多悦高级中学校2022-2023学年数学高二下期末预测试题含解析_第3页
四川省眉山市东坡区多悦高级中学校2022-2023学年数学高二下期末预测试题含解析_第4页
四川省眉山市东坡区多悦高级中学校2022-2023学年数学高二下期末预测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023高二下数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖.有人分别采访了四位歌手,甲说:“乙或丙获奖”;乙说:“甲、丙都未获奖”;丙说:“丁获奖”;丁说:“丙说的不对”.若四位歌手中只有一个人说的是真话,则获奖的歌手是()A.甲B.乙C.丙D.丁2.已知是定义在上的可导函数,的图象如图所示,则的单调减区间是()A. B. C. D.3.函数的单调递减区间是()A. B. C. D.4.已知单位圆有一条长为的弦,动点在圆内,则使得的概率为()A. B. C. D.5.若双曲线的离心率大于2,则该双曲线的虚轴长的取值范围是()A. B. C. D.6.已知,均为正实数,且,则的最小值为()A.20 B.24 C.28 D.327.直线:,,所得到的不同直线条数是()A.22 B.23 C.24 D.258.设、是两个不同的平面,、是两条不同的直线,有下列命题:①如果,,,那么;②如果,,那么;③如果,,那么;④如果平面内有不共线的三点到平面的距离相等,那么;其中正确的命题是()A.①② B.②③ C.②④ D.②③④9.设a=e1eA.a>c>b B.c>a>b C.c>b>a D.a>b>c10.函数的零点所在的一个区间是()A. B. C. D.11.某教师有相同的语文参考书本,相同的数学参考书本,从中取出本赠送给位学生,每位学生本,则不同的赠送方法共有()A.种 B.种 C.种 D.种12.已知i为虚数单位,复数z满足,则复()A.1 B. C.i D.二、填空题:本题共4小题,每小题5分,共20分。13.已知甲、乙、丙3名运动员击中目标的概率分别为,,,若他们3人分别向目标各发1枪,则三枪中至少命中2次的概率为______.14.若一个圆锥的母线长是底面半径的3倍,则该圆锥的侧面积是底面积的_________倍;15.已知某程序框图如图所示,则执行该程序后输出的结果是_____.16.已知、满足,则的最小值为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)给定椭圆,称圆为椭圆的“伴随圆”.已知点是椭圆上的点(1)若过点的直线与椭圆有且只有一个公共点,求被椭圆的伴随圆所截得的弦长:(2)是椭圆上的两点,设是直线的斜率,且满足,试问:直线是否过定点,如果过定点,求出定点坐标,如果不过定点,试说明理由。18.(12分)如图,在四棱锥中,平面,四边形为正方形,,、分别是、中点.(1)证明:(2)求平面与平面所成锐二面角的值.19.(12分)在中,角所对的边分别为且.(1)求角的值;(2)若为锐角三角形,且,求的取值范围.20.(12分)如图,在直三棱柱中,平面侧面,且.(1)求证:;(2)若直线与平面所成角的大小为,求锐二面角的大小21.(12分)如图是某市年月日至日的空气质量指数趋势图,某人随机选择年月日至月日中的某一天到达该市,并停留天.(1)求此人到达当日空气质量指数大于的概率;(2)设是此人停留期间空气质量指数小于的天数,求的分布列与数学期望;(3)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)22.(10分)从某工厂的一个车间抽取某种产品50件,产品尺寸(单位:)落在各个小组的频数分布如下表:数据分组频数(1)根据频数分布表,求该产品尺寸落在的概率;(2)求这件产品尺寸的样本平均数;(3)根据频率分布对应的直方图,可以认为这种产品尺寸服从正态分布;其中近似为样本平均值,近似为样本方差,经计算得,利用正态分布,求.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】分析:因为四位歌手中只有一个人说的是真话,假设某一个人说的是真话,如果与条件不符,说明假设不成立,如果与条件相符,说明假设成立.详解:若乙是获奖的歌手,则甲、乙、丁都说的真话,不符合题意;若丙是获奖的歌手,则甲、丁都说的真话,不符合题意;若丁是获奖的歌手,则乙、丙都说的真话,不符合题意;若甲是获奖的歌手,则甲、乙、丙都说的假话,丁说的真话,符合题意;故选A.点睛:本题考查合情推理,属基础题.2、B【解析】分析:先根据图像求出,即得,也即得结果.详解:因为当时,,所以当时,,所以的单调减区间是,选B.点睛:函数单调性问题,往往转化为导函数符号是否变号或怎样变号问题,经常转化为解方程或不等式.3、D【解析】分析:对求导,令,即可求出函数的单调递减区间.详解:函数的定义域为,得到.故选D点睛:本题考查利用导数研究函数的单调性,属基础题.4、A【解析】

建立直角坐标系,则,设点坐标为,则,故,则使得的概率为,故选A.【点睛】(1)当试验的结果构成的区域为长度、面积、体积等时,应考虑使用几何概型求解.(2)利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域.(3)几何概型有两个特点:一是无限性,二是等可能性.基本事件可以抽象为点,尽管这些点是无限的,但它们所占据的区域都是有限的,因此可用“比例解法”求解几何概型的概率.5、C【解析】

根据离心率大于2得到不等式:计算得到虚轴长的范围.【详解】,,,故答案选C【点睛】本题考查了双曲线的离心率,虚轴长,意在考查学生的计算能力.6、A【解析】分析:由已知条件构造基本不等式模型即可得出.详解:均为正实数,且,则当且仅当时取等号.的最小值为20.故选A.点睛:本题考查了基本不等式的性质,“一正、二定、三相等”.7、B【解析】

根据排列知识求解,关键要减去重复的直线.【详解】当m,n相等时,有1种情况;当m,n不相等时,有种情况,但重复了8条直线,因此共有条直线.故选B.【点睛】本题考查排列问题,关键在于减去斜率相同的直线,属于中档题.8、B【解析】

根据线面垂直与线面平行的性质可判断①;由直线与平面垂直的性质可判断②;由直线与平面平行的性质可判断③;根据平面与平面平行或相交的性质,可判断④.【详解】对于①如果,,,根据线面垂直与线面平行性质可知或或,所以①错误对于②如果,,根据直线与平面垂直的性质可知,所以②正确;对于③如果,,根据直线与平面平行的判定可知,所以③正确;对于④如果平面内有不共线的三点到平面的距离相等,当两个平面相交时,若三个点分布在平面的两侧,也可以满足条件,所以错误,所以④错误;综上可知,正确的为②③故选:B【点睛】本题考查了直线与平面平行、直线与平面垂直的性质,平面与平面平行的性质,属于中档题.9、B【解析】

依据y=lnx的单调性即可得出【详解】∵b=ln而a=e1e>0,c=又lna=lne1所以lnc>lna,即有c>a,因此c>a>b【点睛】本题主要考查利用函数的单调性比较大小。10、A【解析】分析:判断函数值,利用零点定理推出结果即可.详解:函数,可得:f(﹣1)=5>0,f(0)=3>0,f(1)=>0,f(2)=>0,f(3)=﹣,由零点定理可知,函数的零点在(2,3)内.故选A.点睛:本题考查零点存在定理的应用,考查计算能力.零点存在性定理:如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,且有f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b)使得f(c)=0,这个c也就是方程f(x)=0的根.11、B【解析】若本中有本语文和本数学参考,则有种方法,若本中有本语文和本参考,则有种方法,若本中有语文和本参考,则有种方法,若本都是数学参考书,则有一种方法,所以不同的赠送方法共有有,故选B.12、C【解析】

利用两个复数代数形式的除法法则及虚数单位的幂运算性质,化简复数到最简形式.【详解】解:复数,故选:.【点睛】本题考查两个复数代数形式的乘除法,两个复数相除,分子和分母同时除以分母的共轭复数,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

设事件A表示“甲命中”,事件B表示“乙命中”,事件C表示“丙命中”,则,,,他们3人分别向目标各发1枪,则三枪中至少命中2次的概率为:,由此能求出结果.【详解】解:设事件A表示“甲命中”,事件B表示“乙命中”,事件C表示“丙命中”,则,,,他们3人分别向目标各发1枪,则三枪中至少命中2次的概率为:.故答案为.【点睛】本题考查概率的求法,考查相互独立事件概率乘法公式等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.14、1;【解析】

分别计算侧面积和底面积后再比较.【详解】由题意,,,∴.故答案为1.【点睛】本题考查圆锥的侧面积,掌握侧面积计算公式是解题关键.属于基础题.15、-1【解析】

本题考查了程序框图中的循环结构,带入求值即可.【详解】当.这是一个循环结构且周期为3,因为,所以输出结果为-1【点睛】本题主要考查了程序框图中的循环结构,带入求出周期即可.16、4【解析】

此题考查线性规划问题,只需认真作出不等式表示的平面区域,把目标函数转化为截距式求值即可.【详解】作出不等式表示的平面区域,如图所示:令,则,作出直线l:,平移直线l,由图可得,当直线经过点B时,直线在y轴上的截距最大,此时取得最小值,得B(2,2),代入故填4.【点睛】本题主要考查学生的作图能力及分析能力,难度较小.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)见解析【解析】试题分析:(1)分析直线的斜率是否存在,若不存在不符合题意,当存在时设直线,根据直线与圆的关系中弦心距,半径,半弦长构成的直角三角形求解即可;(2)设直线的方程分别为,设点,联立得得同理,计算,同理因为,可得,从而可证.试题解析:(1)因为点是椭圆上的点.即椭圆伴随圆得同理,计算当直线的斜率不存在时:显然不满足与椭圆有且只有一个公共点当直接的斜率存在时:设直线与椭圆联立得由直线与椭圆有且只有一个公共点得解得,由对称性取直线即圆心到直线的距离为直线被椭圆的伴随圆所截得的弦长(2)设直线的方程分别为设点联立得则得同理斜率同理因为所以三点共线点睛:本题主要考查了椭圆的方程及直线与椭圆的位置关系,是高考的必考点,属于难题.求椭圆方程的方法一般就是根据条件建立的方程,求出即可,注意的应用;涉及直线与圆锥曲线相交时,未给出直线时需要自己根据题目条件设直线方程,要特别注意直线斜率是否存在的问题,避免不分类讨论造成遗漏,然后要联立方程组,得一元二次方程,利用根与系数关系写出,再根据具体问题应用上式,其中要注意判别式条件的约束作用.18、(1)证明见解析;(2).【解析】

(1)要证,可证平面,利用线面垂直即可得到线线垂直.(2)建立空间直角坐标系,计算平面的一个法向量和平面的一个法向量,利用向量夹角公式即可得到答案.【详解】(1)平面,又,为平面上相交直线,平面,而等腰三角形中有平面而平面,.(2)易知两两垂直,故分别以其所在直线为坐标轴建系则求得平面的一个法向量,平面的一个法向量平面与平面所成锐二面角为.【点睛】本题主要考查立体几何中线线垂直,二面角的相关计算,意在考查学生的空间想象能力,计算能力,转化能力,难度中等.19、(1);(2).【解析】试题分析:(1)在三角形中处理边角关系时,一般全部转化为角的关系,或全部转化为边的关系.题中若出现边的一次式一般采用正弦定理,出现边的二次式一般采用余弦定理,应用正弦、余弦定理时,注意公式变形的应用,解决三角形问题时,注意角的限制范围;(2)在三角形中,注意隐含条件,(3)注意锐角三角形的各角都是锐角.(4)把边的关系转化成角,对于求边的取值范围很有帮助试题解析:(1)由,得,所以,则,由,。(2)由(1)得,即,又为锐角三角形,故从而.由,所以所以,所以因为所以即考点:余弦定理的变形及化归思想20、(1)详见解析;(2).【解析】

(1)本题首先可以取的中点并连接,然后利用平面侧面得到平面,再根据三棱柱是直三棱柱得到,最后根据线面垂直的相关性质得到侧面,即可得出结果;(2)首先可以构造出空间直角坐标系,然后求出平面与平面的法向量,即可得出结果.【详解】(1)如图,取的中点,连接.因为,所以.由平面侧面,且平面侧面,得平面,又平面,所以,因为三棱柱是直三棱柱,所以底面,,又,从而侧面,又侧面,故;(2)由(1)知且底面,所以以点为原点,以所在直线分别为,,轴建立空间直角坐标系,设,则,,,,,,,,设平面的一个法向量,由,,得,令,得,则,设直线与平面所成的角为,则,所以,解得,即.又设平面的一个法向量为,同理可得.设锐二面角的大小为,则,由,得,所以锐二面角的大小为.【点睛】本题考查了解析几何的相关性质,主要考查了线线垂直的证明以及二面角的求法,线线垂直可以通过线面垂直证明,而二面角则可以通过构造空间直角坐标系并借助法向量来求解,考查推理能力,考查数形结合思想,是中档题

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论