




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.既是偶函数又在区间上单调递减的函数是()A. B. C. D.2.袋中装有红球3个、白球2个、黑球1个,从中任取2个,则互斥而不对立的两个事件是A.至少有一个白球;都是白球 B.至少有一个白球;至少有一个红球C.至少有一个白球;红、黑球各一个 D.恰有一个白球;一个白球一个黑球3.的展开式中含项的系数为()A.160 B.210 C.120 D.2524.设方程的两个根为,则()A. B. C. D.5.设变量x,y满足约束条件,则目标函数的最大值为()A.4 B.6 C.8 D.106.中国古代数学著作《算法统宗》巾有这样一个问题:“三百七十八里关,初行健步不为难日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还”其大意为:“有人走了378里路,第一天健步行走,从第二天起因脚痛每天走的路程为前一天的一半,走了6天后到达目的地.”问此人第4天和第5天共走了A.60里 B.48里 C.36里 D.24里7.为了解某高校高中学生的数学运算能力,从编号为0001,0002,…,2000的2000名学生中采用系统抽样的方法抽取一个容量为50的样本,并把样本编号从小到大排列,已知抽取的第一个样本编号为0003,则最后一个样本编号是()A.0047 B.1663 C.1960 D.19638.函数的极值点所在的区间为()A. B. C. D.9.设三次函数的导函数为,函数的图象的一部分如图所示,则正确的是()A.的极大值为,极小值为B.的极大值为,极小值为C.的极大值为,极小值为D.的极大值为,极小值为10.6把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为()A.144 B.120 C.72 D.2411.函数的单调递增区间是()A. B.C. D.12.的展开式中含项的系数为()A.-160 B.-120 C.40 D.200二、填空题:本题共4小题,每小题5分,共20分。13.甲、乙两名运动员进行乒乓球单打比赛,已知每一局甲胜的概率为.比赛采用“五局三胜(即有一方先胜3局即获胜,比赛结束)制”,则甲获胜的概率是____.14.将极坐标化成直角坐标为_________.15.设,函数f
是偶函数,若曲线
的一条切线的斜率是,则切点的横坐标为______.16.已知为虚数单位,则复数_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知满足,.(1)求,并猜想的表达式;(2)用数学归纳法证明对的猜想.18.(12分)设命题:方程表示双曲线;命题:“方程表示焦点在轴上的椭圆”.(1)若和均为真命题,求的取值范围;(2)若为真命题,为假命题,求实数的取值范围.19.(12分)设函数.(Ⅰ)求的值;(Ⅱ)设,若过点可作曲线的三条切线,求实数的取值范围.20.(12分)已知的展开式中的二项式系数之和比各项系数之和大(1)求展开式所有的有理项;(2)求展开式中系数最大的项.21.(12分)最新研究发现,花太多时间玩手机游戏的儿童,患多动症的风险会加倍.青少年的大脑会很快习惯闪烁的屏幕、变幻莫测的手机游戏,一旦如此,他们在教室等视觉刺激较少的地方,就很难集中注意力.研究人员对110名年龄在7岁到8岁的儿童随机调查,并在孩子父母的帮助下记录了他们在1个月里玩手机游戏的习惯.同时,教师记下这些孩子出现的注意力不集中问题.统计得到下列数据:注意力不集中注意力集中总计不玩手机游戏204060玩手机游戏302050总计5060110(1)试估计7岁到8岁不玩手机游戏的儿童中注意力集中的概率;(2)能否在犯错误的概率不超过0.010的前提下认为玩手机游戏与注意力集中有关系?附表:0.100.050.0250.0100.0050.0012.7063.8405.0246.6357.87910.828.22.(10分)世界那么大,我想去看看,每年高考结束后,处于休养状态的高中毕业生旅游动机强烈,旅游可支配收入日益增多,可见高中毕业生旅游是一个巨大的市场.为了解高中毕业生每年旅游消费支出(单位:百元)的情况,相关部门随机抽取了某市的1000名毕业生进行问卷调查,并把所得数据列成如下所示的频数分布表:组别[0,20)[20,40)[40,60)[60,80)[80,100)频数22504502908(1)求所得样本的中位数(精确到百元);(2)根据样本数据,可近似地认为学生的旅游费用支出服从正态分布,若该市共有高中毕业生35000人,试估计有多少位同学旅游费用支出在8100元以上;(3)已知样本数据中旅游费用支出在[80,100)范围内的8名学生中有5名女生,3名男生,现想选其中3名学生回访,记选出的男生人数为,求的分布列与数学期望.附:若,则,
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
试题分析:根据函数和都是奇函数,故排除A,C;由于函数是偶函数,周期为,在上是减函数,在上是增函数,故不满足题意条件,即B不正确;由于函数是偶函数,周期为,且在上是减函数,故满足题意,故选D.考点:余弦函数的奇偶性;余弦函数的单调性.2、C【解析】
由题意逐一考查所给的事件是否互斥、对立即可求得最终结果.【详解】袋中装有红球3个、白球2个、黑球1个,从中任取2个,逐一分析所给的选项:在A中,至少有一个白球和都是白球两个事件能同时发生,不是互斥事件,故A不成立.在B中,至少有一个白球和至少有一个红球两个事件能同时发生,不是互斥事件,故B不成立;在C中,至少有一个白球和红、黑球各一个两个事件不能同时发生但能同时不发生,是互斥而不对立的两个事件,故C成立;在D中,恰有一个白球和一个白球一个黑球两个事件能同时发生,不是互斥事件,故D不成立;本题选择C选项.【点睛】“互斥事件”与“对立事件”的区别:对立事件是互斥事件,是互斥中的特殊情况,但互斥事件不一定是对立事件,“互斥”是“对立”的必要不充分条件.3、D【解析】
先化简,再由二项式通项,可得项的系数.【详解】,,当时,.故选D.【点睛】本题考查二项式展开式中指定项的系数,解题关键是先化简再根据通项公式求系数.4、D【解析】
画出方程左右两边所对应的函数图像,结合图像可知答案。【详解】画出函数与的图像,如图结合图像容易知道这两个函数的图像有两个交点,交点的横坐标即为方程的两个根,结合图像可知,,根据是减函数可得,所以有图像可知所以即,则,所以,而所以故选D【点睛】本题考查对数函数与指数函数的图像与性质,解题的关键是画出图像,利用图像解答,属于一般题。5、C【解析】
先作出约束条件表示的平面区域,令,由图求出的范围,进而求出的最大值.【详解】作出可行域如图:令,由得,点;由得,点,由图知当目标函数经过点时,最大值为4,当经过点时,最小值为,所以的最大值为8.故选:C【点睛】本题主要考查了简单线性规划问题,考查了学生的作图能力与数形结合的思想.6、C【解析】
每天行走的里程数是公比为的等比数列,且前和为,故可求出数列的通项后可得.【详解】设每天行走的里程数为,则是公比为的等比数列,所以,故(里),所以(里),选C.【点睛】本题为数学文化题,注意根据题设把实际问题合理地转化为数学模型,这类问题往往是基础题.7、D【解析】,故最后一个样本编号为,故选D.8、A【解析】
求出导函数,然后运用函数零点存在性定理进行验证可得所求区间.【详解】∵,∴,且函数单调递增.又,∴函数在区间内存在唯一的零点,即函数的极值点在区间内.故选A.【点睛】本题考查函数零点存在性定理的应用,解答本题时要弄清函数的极值点即为导函数的零点,同时还应注意只有在导函数零点左右两侧的函数值变号时,该零点才为极值点,否则导函数的零点就不是极值点.9、C【解析】
由的图象可以得出在各区间的正负,然后可得在各区间的单调性,进而可得极值.【详解】由图象可知:当和时,,则;当时,,则;当时,,则;当时,,则;当时,,则.所以在上单调递减;在上单调递增;在上单调递减.所以的极小值为,极大值为.故选C.【点睛】本题考查导数与函数单调性的关系,解题的突破点是由已知函数的图象得出的正负性.10、D【解析】试题分析:先排三个空位,形成4个间隔,然后插入3个同学,故有种考点:排列、组合及简单计数问题11、C【解析】
首先利用诱导公式化简函数解析式,之后应用余弦函数单调区间的公式解关于x的不等式,即可得到所求单调递增区间.【详解】因为,根据余弦函数的性质,令,可得,所以函数的单调递增区间是,故选C.【点睛】该题考查的是有关余弦型函数的单调怎区间的求解问题,在解题的过程中,涉及到的知识点有诱导公式,余弦函数的单调增区间,余弦型函数的性质,注意整体角思维的运用.12、B【解析】分析:将化为含由展开式中的,常数项与中展开式中的常数项,分别对应相乘得到.分别求出相应的系数,对应相乘再相加即可.详解:将化为含由展开式中的,常数项与中展开式中的常数项,分别对应相乘得到.展开式的通项为,常数项的系数分别为展开式的通项为常数项,的系数分别为故的展开式中含项的系数为故选B.点睛:本题考查了二项式定理的应用问题,也考查了利用展开式的通项公式求指定项的系数,是基础题目.二、填空题:本题共4小题,每小题5分,共20分。13、;【解析】
利用相互独立事件同时发生的概率计算求解,甲获胜,则比赛打了5局,且最后一局甲胜利.【详解】由题意知,前四局甲、乙每人分别胜2局,则甲获胜的概率是:.【点睛】本题考查相互独立事件同时发生的概率,属于基础题.14、【解析】
试题分析:由题意得,,所以直角坐标为故答案为:考点:极坐标与直角坐标的互化.15、【解析】
先根据f(x)为偶函数求得,再由,解得.【详解】由题意可得f(x)=f(-x),即,变形为为任意x时都成立,所以,所以,设切点为,,由于是R上的单调递增函数,且.所以.填.【点睛】本题考查函数的奇偶性与单调性及由曲线的斜率求切点横坐标.16、【解析】
由复数乘法法则即可计算出结果【详解】.【点睛】本题考查了复数的乘法计算,只需按照计算法则即可得到结果,较为简单三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)()(2)见解析【解析】试题分析:(1)依题意,有,,故猜想;(2)下面用数学归纳法证明.①当时,,显然成立;②假设当)时,猜想成立,即,证明当时,也成立.结合①②可知,猜想对一切都成立.试题解析:(1)猜想:()(2)下面用数学归纳法证明()①当时,,显然成立;②假设当)时,猜想成立,即,则当时,即对时,猜想也成立;结合①②可知,猜想对一切都成立.考点:合情推理与演绎推理、数学归纳法.18、(1);(2)或【解析】
(1)根据双曲线方程和椭圆方程的标准形式,可得同时成立,从而求出;(2)为真命题,为假命题,则、一真一假,再根据集合的交、补运算求得或.【详解】(1)若为真命题,则,解得:或.若为真命题,则,解得:.若和均为真命题时,则的取值范围为.(2)若为真命题,为假命题,则、一真一假.当真假时,解得:或当假真时,,无解综上所述:的取值范围为或.【点睛】本题以椭圆、双曲线方程的标准形式为背景,与简易逻辑知识进行交会,本质考查集合的基本运算.19、(Ⅰ)8(Ⅱ)【解析】
(Ⅰ)根据二项定理展开式展开,即可确定对应项的系数,即可求解.(Ⅱ)代入值后可求得的解析式,经过检验可知点不在曲线上,即可设切点坐标为,代入曲线方程并求得,由导数的几何意义及两点间斜率公式,可得方程,且由题意可知该方程有三个不同的实数根;分离参数并构造函数,进而求得,令求得极值点和极值,由直线截此图象有三个交点即可确定的取值范围.【详解】(Ⅰ)根据二项式定理展开式的应用,展开可得所以(Ⅱ)由题意因为点不在曲线上,所以可设切点为.则.因为,所以切线的斜率为.则,即.因为过点可作曲线的三条切线,所以方程有三个不同的实数解.分离参数,设函数,所以,令,可得,令,解得或,所以在单调递增,在单调递减.所以的极大值为,极小值为.用直线截此图象,当两图象有三个交点,即时,即可作曲线的三条切线.【点睛】本题考查了二项式定理展开式的简单应用,两点间斜率公式及导数的几何意义应用,分离参数及构造函数研究三次函数性质的综合应用,属于中档题.20、(1);(2)【解析】
令可得展开式的各项系数之和,而展开式的二项式系数之和为,列方程可求的值及通项,(1)为整数,可得的值,进而可得展开式中所有的有理项;(2)假设第项最大,且为偶数,则,解出的值,进而可求得系数最大的项.【详解】解:令可得,展开式中各项系数之和为,而展开式中的二项式系数之和为,,,,(1)当为整数时,为有理项,则,所以展开
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 六一慰问服务活动方案
- 六一梦回大唐活动方案
- 六一活动家委会活动方案
- 六一活动托教活动方案
- 六一活动竞赛活动方案
- 六一活动送水杯活动方案
- 六一诗歌活动方案
- 六一饮品活动方案
- 医美护士考试试题及答案
- 安全生产b证试题及答案
- 海外职场文化差异与适应技巧
- 2025-2030年中国商业遥感卫星行业竞争格局及发展趋势分析报告
- 2024年度海南省国家电网招聘之电网计算机通关题库(附答案)
- 特殊方法测密度-2025年中考物理专项复习(解析版)
- 步履式柴油锤打桩机安全操作规程
- 痔疮治疗研究进展综述(2025年版)
- 2025年合肥市公安局第一批招考聘用警务辅助人员591人高频重点提升(共500题)附带答案详解
- Unit 6 Beautiful landscapes Integration 说课稿 -2024-2025学年译林版英语七年级下册001
- 干细胞治疗护理
- DB36T 667-2018 泰和乌鸡种鸡生产技术规程
- 酒吧入职合同模版
评论
0/150
提交评论