四川省蓬安二中2022-2023学年数学高二第二学期期末教学质量检测试题含解析_第1页
四川省蓬安二中2022-2023学年数学高二第二学期期末教学质量检测试题含解析_第2页
四川省蓬安二中2022-2023学年数学高二第二学期期末教学质量检测试题含解析_第3页
四川省蓬安二中2022-2023学年数学高二第二学期期末教学质量检测试题含解析_第4页
四川省蓬安二中2022-2023学年数学高二第二学期期末教学质量检测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023高二下数学模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设函数f(x)在R上可导,其导函数为f′(x),且函数y=(2-x)f′(x)的图像如图所示,则下列结论中一定成立的是()A.函数f(x)有极大值f(1)和极小值f(-1)B.函数f(x)有极大值f(1)和极小值f(2)C.函数f(x)有极大值f(2)和极小值f(1)D.函数f(x)有极大值f(-1)和极小值f(2)2.利用独立性检验来考虑两个分类变量X与Y是否有关系时,通过查阅下表来确定“X和Y有关系”的可信度.如果k>5.024,那么就有把握认为“X和Y有关系”的百分比为()P(K2>k0)0.500.400.250.150.100.050.0250.0100.0050.001k00.4550.7081.3232.0722.7063.8415.0246.6357.87910.83A.25% B.95%C.5% D.97.5%3.在等差数列中,且,则的最大值等于()A.3 B.4 C.6 D.94.函数f(x)=13ax3A.a>1 B.a≥1 C.a>2 D.a≥25.对变量进行回归分析时,依据得到的4个不同的回归模型画出残差图,则下列模型拟合精度最高的是()A. B.C. D.6.设复数z满足,z在复平面内对应的点为(x,y),则A. B. C. D.7.在研究吸烟与患肺癌的关系中,通过收集数据、整理分析数据得“吸烟与患肺癌有关”的结论,并且有99%以上的把握认为这个结论是成立的,则下列说法中正确的是.A.100个吸烟者中至少有99人患有肺癌B.1个人吸烟,那么这人有99%的概率患有肺癌C.在100个吸烟者中一定有患肺癌的人D.在100个吸烟者中可能一个患肺癌的人也没有8.已知函数.若不等式的解集中整数的个数为,则的取值范围是()A. B. C. D.9.某中学有高中生3500人,初中生1500人,为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n的样本,已知从高中生中抽取70人,则n为()A.100 B.150C.200 D.25010.乘积可表示为()A. B. C. D.11.函数的零点所在的区间是()A. B. C. D.12.已知双曲线C的中心在原点,焦点在轴上,若双曲线C的一条渐近线与直线平行,则双曲线C的离心率为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.复数的共轭复数________.(其中为虚数单位)14.执行如图所示的程序框图,则输出的的值为____________.15.在长方体中,,,则直线与平面所成角的正弦值为__________.16.在的二项展开式中,所有项的二项式系数之和为256,则n等于_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设函数(1)当时,求函数在上的值域;(2)若不论取何值,对任意恒成立,求的取值范围。18.(12分)已知函数,.(Ⅰ)当时,求函数的单调区间;(Ⅱ)当时,若函数在上有两个不同的零点,求的取值范围.19.(12分)某险种的基本保费为(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:上年度出险次数01234保费设该险种一续保人一年内出险次数与相应概率如下:一年内出险次数01234概率0.300.150.200.200.100.05(1)求一续保人本年度的保费高于基本保费的概率;(2)已知一续保人本年度的保费高于基本保费,求其保费比基本保费高出的概率.20.(12分)某大学综合评价面试测试中,共设置两类考题:类题有4个不同的小题,类题有3个不同的小题.某考生从中任抽取3个不同的小题解答.(1)求该考生至少抽取到2个类题的概率;(2)设所抽取的3个小题中类题的个数为,求随机变量的分布列与均值.21.(12分)某服装超市举办了一次有奖促销活动,消费每超过600元(含600元),均可抽奖一次,抽奖方案有两种,顾客只能选择其中的一种.方案一:从装有10个形状、大小完全相同的小球(其中红球3个,黑球7个)的抽奖盒中,一次性摸出3个球,其中奖规则为:若摸到3个红球,享受免单优惠;若摸到2个红球,则打6折;若摸到1个红球,则打7折;若没摸到红球,则不打折.方案二:从装有10个形状、大小完全相同的小球(其中红球3个,黑球7个)的抽奖盒中,有放回每次摸取1球,连摸3次,每摸到1次红球,立减200元.(1)若两个顾客均分别消费了600元,且均选择抽奖方案一,试求两位顾客均享受6折优惠的概率;(2)若某顾客消费恰好满1000元,试从概率的角度比较该顾客选择哪一种抽奖方案更合算.22.(10分)已知二次函数,且,是否存在常数,使得不等式对一切实数恒成立?并求出的值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】由函数y=(2-x)f′(x)的图像可知,方程f′(x)=0有两个实根x=-1,x=1,且在(-∞,-1)上f′(x)<0,在(-1,1)上f′(x)>0,在(1,2)上f′(x)<0,在(2,+∞)上f′(x)<0.所以函数f(x)有极大值f(1)和极小值f(-1).2、D【解析】∵k>5.024,而在观测值表中对应于5.024的是0.025,∴有1-0.025=97.5%的把握认为“X和Y有关系”,

故选D.3、B【解析】

先由等差数列的求和公式,得到,再由基本不等式,即可求出结果.【详解】因为在等差数列中,所以,即,又,所以,当且仅当时,的最大值为4.故选B。【点睛】本题主要考查基本不等式求积的最大值,熟记等差数列的求和公式以及基本不等式即可,属于常考题型.4、D【解析】

根据fx单调递增可知f'x≥0在1,2【详解】由题意得:ffx在1,2上单调递增等价于:f'x即:ax2当x∈1,2时,2x本题正确选项:D【点睛】本题考查根据函数在区间上的单调性求解参数范围的问题,关键是能够将问题转化为恒成立问题,从而利用分离变量的方式来进行求解.5、A【解析】

根据残差的特点,残差点比较均匀地落在水平的带状区域中,说明这样的模型比较合适.带状区域的宽度越窄,说明模型的拟合精度越高.即可得到答案.【详解】用残差图判断模型的拟合效果,残差点比较均匀地落在水平的带状区域中,说明这样的模型比较合适.带状区域的宽度越窄,说明模型的拟合精度越高.故选:.【点睛】本题考查了残差分析,了解残差分析的原理及特点是解决问题的关键,本题属基础题.6、C【解析】

本题考点为复数的运算,为基础题目,难度偏易.此题可采用几何法,根据点(x,y)和点(0,1)之间的距离为1,可选正确答案C.【详解】则.故选C.【点睛】本题考查复数的几何意义和模的运算,渗透了直观想象和数学运算素养.采取公式法或几何法,利用方程思想解题.7、D【解析】独立性检验是判断两个分类变量是否有关;吸烟与患肺癌是两个分类变量,通过收集数据、整理分析数据得“吸烟与患肺癌有关”的结论,并且有以上的把握认为这个结论是成立的.指的是得出“吸烟与患肺癌有关”这个结论正确的概率超过99%,即作出“吸烟与患肺癌有关”这个结论犯错的概率不超过1%;不能作为判断吸烟人群中有多少人患肺癌,以及1个人吸烟,这个人患有肺癌的概率的依据.故选D8、D【解析】

对进行变形,得到,令,,即的整数个数为3,再由的函数图像和的函数图像,写出限制条件,得到答案【详解】,即设,其中时,时,即符合要求,所以时,,单调递减,,单调递增,为极小值.有三个整数解,则还有一个整数解为或者是①当解集包含时,时,所以需要满足即,解得②当解集包含时,需要满足即整理得,而,所以无解集,即该情况不成立.综上所述,由①②得,的范围为故选D项.【点睛】利用导数研究函数图像,两个函数图像的位置关系与解析式大小之间的关系,数形结合的数学思想,题目较综合,考查内容比较多,属于难题.9、A【解析】试题分析:根据已知可得:,故选择A考点:分层抽样10、A【解析】

根据对排列公式的认识,进行分析,解答即可【详解】最大数为,共有个自然数连续相乘根据排列公式可得故选【点睛】本题是一道比较基础的题型,主要考查的是排列与组合的理解,掌握排列数的公式是解题的关键11、B【解析】分析:根据基本初等函数的性质,确定函数在上是增函数,且满足,,结合函数的零点判定定理可得函数的零点所在的区间.详解:由基本初等函数可知与均为在上是增函数,所以在上是增函数,又,根据函数零点的判定定理可得函数的零点所在的区间是.故选B.点睛:本题主要考查求函数的值,函数零点的判定定理,属于基础题.12、A【解析】分析:根据双曲线的一条渐近线与直线平行,利用斜率相等列出的关系式,即可求解双曲线的离心率.详解:双曲线的中心在原点,焦点在轴上,若双曲线的一条渐近线与直线平行,可得,即,可得,离心率,故选A.点睛:本题主要考查双曲线的定义及离心率,属于难题.离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出,从而求出;②构造的齐次式,求出;③采用离心率的定义以及圆锥曲线的定义来求解.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

根据复数除法法则,分子分母同乘分母的共轭复数化简成的形式,再根据共轭复数的定义求出所求即可.【详解】,复数的共轭复数是.故答案为:.【点睛】本题主要考查复数代数形式的乘除运算、共轭复数的定义,考查基本运算求解能力,属于基础题.14、1【解析】

列举出算法的每一步,于此可得出该算法输出的结果.【详解】成立,,,,;不成立,输出的值为,故答案为.【点睛】本题考查算法与程序框图,要求读懂程序框图,解题时一般是列举每次循环,并写出相应的结果,考查推理能力,属于基础题.15、【解析】分析:过作,垂足为,则平面,则即为所求平面角,从而可得结果.详解:依题意,画出图形,如图,过作,垂足为,由平面,可得,所以平面,则即为所求平面角,因为,,所以,故答案为.点睛:本题考查长方体的性质,以及直线与平面所成的角,属于中档题.求直线与平面所成的角由两种方法:一是传统法,证明线面垂直找到直线与平面所成的角,利用平面几何知识解答;二是利用空间向量,求出直线的方向向量以及平面的方向向量,利用空间向量夹角余弦公式求解即可.16、8【解析】

由题意可知,,解得n,得到结果.【详解】因为的展开式中所有项的二项式系数之和为256,所以有,解得,故答案是8.【点睛】这是一道考查二项式定理的题目,解题的关键是明确二项展开式的性质,由二项式定理可得,二项式所有项的二项式系数和为,从而求得结果.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】

(1)首先判断出为上的减函数,进而可得其值域;(2)易知的最大值为2,原题等价于对任意恒成立,根据分离参数思想可得任意恒成立,求出两端最值即可.【详解】解:(1)与在上均为减函数,在上为减函数,的值域为(2)易知的最大值为2.由题意可知,即对任意恒成立,即任意恒成立。设,,,,,【点睛】本题主要考查了函数值域的求法,不等式恒成立问题,分离参数求最值是解题的关键,该题有一定难度.18、(Ⅰ)单调递减区间为,单调递增区间为;(Ⅱ).【解析】

(Ⅰ)将代入函数的解析式,求出该函数的定义域与导数,解不等式和并与定义域取交集可分别得出该函数的单调递减区间和递增区间;(Ⅱ)求出函数的导数,分析函数在区间上的单调性,由题中条件得出,于此可解出实数的取值范围。【详解】(Ⅰ)函数的定义域为,当时,,,令,即,解得,令,即,解得,∴函数的单调递减区间为,单调递增区间为;(Ⅱ),,由得,,当时,,当时,,∴函数在上单调递减,在上单调递增,∵,,∴函数在上有两个不同的零点,只需,解得,∴的取值范围为.【点睛】本题考查利用导数求函数的单调区间,利用导数研究函数的零点个数问题,解题时常用导数研究函数的单调性、极值与最值,将零点个数转化为函数极值与最值的符号问题,若函数中含有单参数问题,可利用参变量分离思想求解,考查化归与转化思想,属于中等题。19、(1)0.55(2)【解析】分析:(1)将保费高于基本保费转化为一年内的出险次数,再根据表中的概率求解即可.(2)根据条件概率并结合表中的数据求解可得结论.详解:(1)设表示事件:“一续保人本年度的保费高于基本保费”,则事件发生当且仅当一年内出险次数大于1,故.(2)设表示事件:“一续保人本年度的保费比基本保费高出”,则事件发生当且仅当一年内出险次数大于3,故.又,故,因此其保费比基本保费高出的概率为.点睛:求概率时,对于条件中含有“在……的条件下,求……发生的概率”的问题,一般为条件概率,求解时可根据条件概率的定义或利用古典概型概率求解.20、(1);(2)分布列见解析,【解析】

(1)利用古典概率与互斥事件概率计算公式即可得出.(2)设所抽取的1个小题中类题的个数为,则的取值为0,1,2,1.利用超几何分布列计算公式即可得出.【详解】(1)该考生至少抽取到2个类题的概率.(2)设所抽取的1个小题中类题的个数为,则的取值为0,1,2,1.,,,,随机变量的分布列为:0121均值.【点睛】本题考查古典

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论