四川省青神中学2022-2023学年数学高二下期末学业质量监测试题含解析_第1页
四川省青神中学2022-2023学年数学高二下期末学业质量监测试题含解析_第2页
四川省青神中学2022-2023学年数学高二下期末学业质量监测试题含解析_第3页
四川省青神中学2022-2023学年数学高二下期末学业质量监测试题含解析_第4页
四川省青神中学2022-2023学年数学高二下期末学业质量监测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

VIP免费下载

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023高二下数学模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知定义在R上的函数满足:对任意x∈R,都有成立,且当时,(其中为的导数).设,则a,b,c三者的大小关系是()A. B. C. D.2.若函数在区间上的图象如图所示,则的值()A. B.C. D.3.若直线把圆分成面积相等的两部分,则当取得最大值时,坐标原点到直线的距离是()A.4B.C.2D.4.已知函数,若,则实数的取值范围是()A. B.C. D.5.已知命题,总有,则为()A.使得 B.使得C.总有 D.,总有6.为了了解手机品牌的选择是否和年龄的大小有关,随机抽取部分华为手机使用者和苹果机使用者进行统计,统计结果如下表:年龄手机品牌华为苹果合计30岁以上40206030岁以下(含30岁)152540合计5545100附:P()0.100.050.0100.0012.7063.8416.63510.828根据表格计算得的观测值,据此判断下列结论正确的是()A.没有任何把握认为“手机品牌的选择与年龄大小有关”B.可以在犯错误的概率不超过0.001的前提下认为“手机品牌的选择与年龄大小有关”C.可以在犯错误的概率不超过0.01的前提下认为“手机品牌的选择与年龄大小有关”D.可以在犯错误的概率不超过0.01的前提下认为“手机品牌的选择与年龄大小无关”7.若函数至少存在一个零点,则的取值范围为()A. B. C. D.8.已知α,β是相异两个平面,m,n是相异两直线,则下列命题中正确的是()A.若m∥n,m⊂α,则n∥α B.若m⊥α,m⊥β,则α∥βC.若m⊥n,m⊂α,n⊂β,则α⊥β D.若α∩β=m,n∥m,则n∥β9.设随机变量,若,则等于()A. B. C. D.10.计算:()A. B. C. D.11.定积分的值为()A. B. C. D.12.中,角、、的对边分别为,,,若,三角形面积为,,则()A.7 B.8 C.5 D.6二、填空题:本题共4小题,每小题5分,共20分。13.的不同正约数共有______个.14.已知向量,则向量的单位向量______.15.两个半径为1的铁球,熔化成一个球,这个球的半径是_______.16.若,则实数的值为____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)若函数在x=﹣3处有极大值,求c的值;(2)若函数在区间(1,3)上单调递增,求c的取值范围.18.(12分)已知函数.(Ⅰ)若函数在上是单调递增函数,求实数的取值范围;(Ⅱ)若,对任意,不等式恒成立,求实数的取值范围.19.(12分)已知复数,,其中,为虚数单位.(1)若复数为纯虚数,求实数的值;(2)在复平面内,若复数对应的点在第四象限,求实数的取值范围.20.(12分)设.(1)若,且是实系数一元二次方程的一根,求和的值;(2)若是纯虚数,已知时,取得最大值,求;(3)肖同学和谢同学同时独立地解答第(2)小题,己知两人能正确解答该题的概率分别是0.8和0.9,求该题能被正确解答的概率.21.(12分)如图,在四边形中,,,四边形为矩形,且平面,.(1)求证:平面;(2)求二面角的余弦值.22.(10分)己知集合,(1)若,求实数a的取值范围;(2)若,求实数a的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】试题分析:由题意得:对任意x∈R,都有,即f(x)=f(2-x)成立,所以函数的对称轴为x=1,所以f(3)=f(-1).因为当x∈(-∞,1)时,(x-1)f′(x)<0,所以f′(x)>0,所以函数f(x)在(-∞,1)上单调递增.因为-1<0<,所以f(-1)<f(0)<f(),即f(3)<f(0)<f(),所以c<a<b.故选B.考点:本题主要考查熟练函数的奇偶性、单调性、对称性等,利用导数研究函数的单调性。点评:中档题,熟练掌握函数的性质如奇偶性、单调性、周期性、对称性等,在给定区间,导数值非负,函数是增函数,导数值为非正,函数为减函数。自左向右看,函数图象上升,函数增;函数图象下降,函数减。2、A【解析】

根据周期求,根据最值点坐标求【详解】因为,因为时,所以因为,所以,选A.【点睛】本题考查由图像求三角函数解析式,考查基本分析求解能力,属基础题.3、D【解析】依题意可知直线过圆心,代入直线方程得,当且仅当时当好成立,此时原点到直线的距离为.4、A【解析】

代入特殊值对选项进行验证排除,由此得出正确选项.【详解】若,符合题意,由此排除C,D两个选项.若,则不符合题意,排除B选项.故本小题选A.【点睛】本小题主要考查分段函数函数值比较大小,考查特殊值法解选择题,属于基础题.5、B【解析】

利用全称命题的否定解答即得解.【详解】根据全称命题的否定为特称命题可知,¬p为∃x0>0,使得(x0+1)≤1,故选:B.【点睛】本题主要考查全称命题的否定,意在考查学生对该知识的理解掌握水平.6、C【解析】

根据的意义判断.【详解】因为,所以可以在犯错误的概率不超过0.01的前提下认为“手机品牌的选择与年龄大小有关”,故选:C.【点睛】本题考查独立性检验,属于简单题.7、A【解析】

将条件转化为有解,然后利用导数求出右边函数的值域即可.【详解】因为函数至少存在一个零点所以有解即有解令,则因为,且由图象可知,所以所以在上单调递减,令得当时,单调递增当时,单调递减所以且当时所以的取值范围为函数的值域,即故选:A【点睛】1.本题主要考查函数与方程、导数与函数的单调性及简单复合函数的导数,属于中档题.2.若方程有根,则的范围即为函数的值域8、B【解析】

在A中,根据线面平行的判定判断正误;在B中,由平面与平面平行的判定定理得α∥β;在C中,举反例即可判断判断;在D中,据线面平行的判定判断正误;【详解】对于A,若m∥n,m⊂α,则n∥α或n⊂α,故A错;对于B,若m⊥α,m⊥β,则由平面与平面平行的判定定理得α∥β,故B正确;对于C,不妨令α∥β,m在β内的射影为m′,则当m′⊥n时,有m⊥n,但α,β不垂直,故C错误;对于D,若α∩β=m,n∥m,则n∥β或n⊂β,故D错.故选:B.【点睛】本题考查命题真假的判断,是中档题,解题时要认真审题,注意空间中线线、线面、面面间的位置关系的合理运用.9、C【解析】由于,则由正态分布图形可知图形关于对称,故,则,故选C.10、B【解析】

直接利用组合数公式求解即可.【详解】由组合数公式可得.故选:B.【点睛】本题考查组合数公式的应用,是基本知识的考查.11、C【解析】试题分析:=.故选C.考点:1.微积分基本定理;2.定积分的计算.12、A【解析】分析:由已知及三角形的面积公式可求bc,然后由a+b+c=20以及余弦定理,即可求a.详解:由题意可得,S△ABC=bcsinA=bcsin60°∴bcsin60°=10∴bc=40∵a+b+c=20∴20﹣a=b+c.由余弦定理可得,a2=b2+c2﹣2bccos60°=(b+c)2﹣3bc=(20﹣a)2﹣120解得a=1.故选A.点睛:本题综合考查正弦定理、余弦定理及三角形的面积公式等知识的综合应用,解题的关键是灵活利用公式.考查计算能力.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

将进行质因数分解为,然后利用约数和定理可得出的不同正约数个数.【详解】将进行质因数分解为,因此,的不同正约数共有.故答案为:.【点睛】本题考查合数的正约数个数的计算,一般将合数质因数分解,并利用约数和定理进行计算,也可以采用列举法,考查计算能力,属于中等题.14、【解析】

计算出,从而可得出,即可求出向量的坐标.【详解】,,因此,向量的单位向量.故答案为:.【点睛】本题考查与非零向量同向的单位向量坐标的计算,熟悉结论“与非零向量同向的单位向量为”的应用是解题的关键,考查计算能力,属于基础题.15、【解析】

等体积法【详解】【点睛】等体积法16、1【解析】

先求的原函数,再令即可.【详解】易得的原函数,所以,即,故故答案为:1【点睛】本题主要考查定积分的基本运算,属于基础题型.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)c=3或c=﹣1(2)【解析】

(1)求出函数的导数,根据函数的极值点,求出c的值,检验即可;(2)根据函数的单调性得到关于c的不等式组,解出即可.【详解】(1),∵在处有极大值,∴,解得:c=3或﹣1,①当c=3时,,或时,,递增,时,,递减,∴在处有极大值,符合题意;②当时,,或时,,递增,时,,递减,∴在处有极大值,符合题意,综上,c=3或c=﹣1;(2)∵在(1,3)递增,∴c=0或或或或,解得:,∴c的范围是.【点睛】本题考查了函数的单调性、极值问题,考查导数的应用以及转化思想,是一道综合题.18、(Ⅰ);(Ⅱ).【解析】

(Ⅰ)将问题转化为对恒成立,然后利用参变量分离法得出,于是可得出实数的取值范围;(Ⅱ)由(Ⅰ)知,函数在上是增函数,设,并设,得知在区间上为减函数,转化为在上恒成立,利用参变量分离法得到,然后利用导数求出函数在上的最大值可求出实数的取值范围。【详解】(Ⅰ)易知不是常值函数,∵在上是增函数,∴恒成立,所以,只需;(Ⅱ)因为,由(Ⅰ)知,函数在上单调递增,不妨设,则,可化为,设,则,所以为上的减函数,即在上恒成立,等价于在上恒成立,设,所以,因,所以,所以函数在上是增函数,所以(当且仅当时等号成立).所以.即的最小值为1.【点睛】本题考查函数的单调性与导数之间的关系,考查利用导数研究函数不等式恒成立问题,对于函数双变量不等式问题,应转化为新函数的单调性问题,难点在于利用不等式的结构构造新函数,考查分析能力,属于难题。19、(1).(2)【解析】

利用复数代数形式的乘法运算化简,再由实部为0且虚部不为0求解;

求出,再由复数代数形式的加法运算化简,由实部大于0且虚部小于0联立不等式组求解.【详解】(1)由,得,又为纯虚数,所以,且,所以.(2),又复数对应的点在第四象限,所以,且,所以的取值范围是.【点睛】本题考查复数代数形式的乘除运算,考查复数的基本概念,考查复数的代数表示法及其几何意义,属于中档题.20、(1);(2);(3).【解析】

(1)利用复数除法的运算法则化简,再根据实系数一元二次方程的性质和根与系数关系可以求出和的值;(2)设出复数的代数形式,利用复数的除法法则和是纯虚数,可得出复数的实问部和虚部之间的关系,再由时,取得最大值,这样可以求出;(3)求出该题不能被正确解答的概率,然后运用对立事件概率公式求出该题能被正确解答的概率.【详解】(1).因为是实系数一元二次方程的一根,所以也是实系数一元二次方程的一根,因此由根与系数关系可知:,所以和的值分别为;(2)设.是纯虚数,所以有,它表示以为圆心,2为半径的圆,的几何意义是圆上的点到点是距离.在同一条直线上且同向时,取得最大值,因为,所以所以,因此所以(3)该题不能被正确解答的概率为,因此能被正确解答的概率为:.【点睛】本题考查了实系数一元二次方程的根的性质和根与系数关系,考查了根据复数的类别求轨迹问题,考查了对立事件的计算公式.21、(1)见解析(2)【解析】

(1)要证平面,可证平面即可,通过勾股定理可证明,再利用线面垂直可证,于是得证;(2)建立空间直角坐标系,求出平面的一个法向量和平面的一个法向量,再利用数量积公式即得答案.【详解】(1)证明:在梯形中,∵,设又∵,∴∴∴,则∵平面,平面∴,而∴平面∵,∴平面(2)分别以直线为轴,轴,轴建立如图所示的空间直角坐标系设则,,,,∴,,设为平面的一个法向量,由,得,取,则∵是平面的一个法向量,∴∴二面角

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论