 
         
         
         
         
        版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在某个物理实验中,测得变量x和变量y的几组数据,如下表:xy则下列选项中对x,y最适合的拟合函数是()A. B. C. D.2.在个排球中有个正品,个次品.从中抽取个,则正品数比次品数少的概率为()A. B. C. D.3.若函数且在上既是奇函数又是增函数,则的图象是()A. B.C. D.4.函数的最小值为0,则m的取值范围是()A.(1,2) B.(-1,2)C.[1,2) D.[-1,2)5.设命题:,;命题:若,则,则下列命题为真命题的是()A. B. C. D.6.将点的极坐标化成直角坐标是(
)A. B. C. D.7.已知函数,若方程恰有三个实数根,则实数的取值范围是()A. B. C. D.8.若随机变量服从正态分布,则()附:随机变量,则有如下数据:,,.A. B. C. D.9.已知抛物线y2=2x的焦点为F,点P在抛物线上,且|PF|=2,过点P作抛物线准线的垂线交准线于点Q,则|FQ|=()A.1 B.2 C. D.10.设集合,若,则()A.1 B. C. D.-111.已知三棱锥的所有顶点都在球的球面上,满足,,为球的直径,且,则点到底面的距离为A. B. C. D.12.已知a=1,b=3-2A.a>b>c B.a>c>b C.b>c>a D.c>b>a二、填空题:本题共4小题,每小题5分,共20分。13.曲线与坐标轴及所围成封闭图形的面积是__________.14.命题:“,使得”的否定是_______.15.已知函数有两个极值点,则实数m的取值范围为________.16.设,则等于___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,且函数在和处都取得极值.(1)求,的值;(2)求函数的单调递增区间.18.(12分)为了调查我市在校中学生参加体育运动的情况,从中随机抽取了16名男同学和14名女同学,调查发现,男、女同学中分别有12人和6人喜爱运动,其余不喜爱.(1)根据以上数据完成以下列联表:(2)根据列联表的独立性检验,能否在犯错误的概率不超过0.010的前提下认为性别与喜爱运动有关?(3)将以上统计结果中的频率视作概率,从我市中学生中随机抽取3人,若其中喜爱运动的人数为,求的分布列和均值.参考数据:19.(12分)近年来,人们对食品安全越来越重视,有机蔬菜的需求也越来越大,国家也制定出台了一系列支持有机肥产业发展的优惠政策,鼓励和引导农民增施有机肥,“藏粮于地,藏粮于技”.根据某种植基地对某种有机蔬菜产量与有机肥用量的统计,每个有机蔬菜大棚产量的增加量(百斤)与使用有机肥料(千克)之间对应数据如下表:使用有机肥料(千克)345678910产量增加量(百斤)2.12.93.54.24.85.66.26.7(1)根据表中的数据,试建立关于的线性回归方程(精确到);(2)若种植基地每天早上7点将采摘的某有机蔬菜以每千克10元的价格销售到某超市,超市以每千克15元的价格卖给顾客.已知该超市每天8点开始营业,22点结束营业,超市规定:如果当天16点前该有机蔬菜没卖完,则以每千克5元的促销价格卖给顾客(根据经验,当天都能全部卖完).该超市统计了100天该有机蔬菜在每天的16点前的销售量(单位:千克),如表:每天16点前的销售量(单位:千克)100110120130140150160频数10201616141410若以100天记录的频率作为每天16点前销售量发生的概率,以该超市当天销售该有机蔬菜利润的期望值为决策依据,说明该超市选择购进该有机蔬菜110千克还是120千克,能使获得的利润更大?附:回归直线方程中的斜率和截距的最小二乘估计公式分别为:,.参考数据:,.20.(12分)已知函数f(x)=x3+ax2(1)求函数f(x)的解析式及单调区间;(2)求函数f(x)在区间-3,2的最大值与最小值.21.(12分)已知是抛物线的焦点,点是抛物线上一点,且.(1)求,的值;(2)过点作两条互相垂直的直线,与抛物线的另一交点分别是,.①若直线的斜率为,求的方程;②若的面积为12,求的斜率.22.(10分)选修4-5:不等式选讲已知函数.(1)若不等式的解集为,求实数的值;(2)在(1)的条件下,若存在实数使成立,求实数的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
根据所给数据,代入各函数,计算验证可得结论.【详解】解:根据,,代入计算,可以排除;根据,,代入计算,可以排除、;将各数据代入检验,函数最接近,可知满足题意故选:.【点睛】本题考查了函数关系式的确定,考查学生的计算能力,属于基础题.2、A【解析】分析:根据超几何分布,可知共有种选择方法,符合正品数比次品数少的情况有两种,分别为0个正品4个次品,1个正品3个次品,分别求其概率即可。详解:正品数比次品数少,有两种情况:0个正品4个次品,1个正品3个次品,由超几何分布的概率可知,当0个正品4个次品时当1个正品3个次品时所以正品数比次品数少的概率为所以选A点睛:本题考查了超几何分布在分布列中的应用,主要区分二项分布和超几何分布的不同。根据不同的情况求出各自的概率,属于简单题。3、D【解析】
根据题意先得到,,判断其单调性,进而可求出结果.【详解】因为函数且在上是奇函数,所以所以,,又因为函数在上是增函数,所以,所以,它的图象可以看作是由函数向左平移一个单位得到,故选D.【点睛】本题主要考查函数的奇偶性与单调性以及函数图象变换,熟记函数性质即可,属于常考题型.4、B【解析】
化简函数为,根据函数的单调性以及在时取得最小值0,求出的范围.【详解】函数在区间(-1,+∞)上是减函数.当x=2时,y=0.根据题意x∈(m,n]时,.所以m的取值范围是-1<m<2,故选B.【点睛】该题所考查的是利用函数在某个区间上的最值,来确定区间对应的位置,涉及到的知识点有反比例型函数的单调性,确定最值在哪个点处取,从而求得对应的参数的取值范围,属于简单题目.5、D【解析】分析:先判断命题的真假,进而根据复合命题真假的真值表,可得结论.详解:因为成立,所以,不存在,,故命题为假命题,为真命题;当时,成立,但不成立,故命题为假命题,为真命题;故命题均为假命题,命题为真命题,故选D.点睛:本题通过判断或命题、且命题以及非命题的真假,综合考查不等式的性质以及特称命题的定义,属于中档题.解答非命题、且命题与或命题真假有关的题型时,应注意:(1)原命题与其非命题真假相反;(2)或命题“一真则真”;(3)且命题“一假则假”.6、A【解析】本题考查极坐标与直角坐标的互化由点M的极坐标,知极坐标与直角坐标的关系为,所以的直角坐标为即故正确答案为A7、C【解析】当时,画出函数图像如下图所示,由图可知,无解,不符合题意,故排除两个选项.当时,画图函数图像如下图所示,由图可知,或,解得不符合题意,故排除选项,选.点睛:本题主要考查分段函数的图像与性质,考查复合函数的研究方法,考查分类讨论的数学思想方法,考查零点问题题.题目所给的分段函数当时,图像是确定的,当时,图像是含有参数的,所以要对参数进行分类讨论.在分类讨论的过程中,围绕的解的个数来进行.8、B【解析】
先将、用、表示,然后利用题中的概率求出的值.【详解】由题意可知,,则,,,因此,,故选B.【点睛】本题考查利用正态分布原则求概率,解题时要将相应的数用和加以表示,并利用正态曲线的对称性列式求解,考查计算能力,属于中等题.9、B【解析】
不妨设点P在x轴的上方,设P(x1,y1),根据抛物线的性质可得x1=,即可求出点P的坐标,则可求出点Q的坐标,根据两点间的距离公式可求出.【详解】不妨设点P在x轴的上方,设P(x1,y1),∵|PF|=2,∴x1+=2,∴x1=∴y1=,∴Q(-,),∵F(,0),∴|FQ|==2,故选B.【点睛】本题考查了直线和抛物线的位置关系,抛物线的性质,两点间的距离公式,属于基础题.一般和抛物线有关的小题,很多时可以应用结论来处理的;平时练习时应多注意抛物线的结论的总结和应用,尤其和焦半径联系的题目,一般都和定义有关,实现点点距和点线距的转化.10、A【解析】
由得且,把代入二次方程求得,最后对的值进行检验.【详解】因为,所以且,所以,解得.当时,,显然,所以成立,故选A.【点睛】本题考查集合的交运算,注意求出参数的值后要记得检验.11、C【解析】∵三棱锥P-ABC的所有顶点都在球O的球面上,PA为球O的直径且PA=4,∴球心O是PA的中点,球半径R=OC=PA=2,过O作OD⊥平面ABC,垂足是D,∵△ABC满足AB=2,∠ACB=90°,∴D是AB中点,且AD=BD=CD=∴OD=∴点P到底面ABC的距离为d=2OD=2,故选C.点睛:本题考查点到平面的距离的求法,关键是分析出球心O到平面ABC的距离,找到的外接圆的圆心D即可有OD⊥平面ABC,求出OD即可求出点到底面的距离.12、A【解析】
将b、c进行分子有理化,分子均化为1,然后利用分式的基本性质可得出三个数的大小关系。【详解】由3而3+2<6+5,所以b>c,又【点睛】本题考查比较大小,在含有根式的数中,一般采用有理化以及平方的方式来比较大小,考查分析问题的能力,属于中等题。二、填空题:本题共4小题,每小题5分,共20分。13、【解析】分析:首先利用定积分表示曲边梯形的面积,然后计算定积分.详解:曲线与两坐标轴及所围成的图形的面积为即答案为.点睛:本题考查了定积分的运用求曲边梯形的面积;正确利用定积分表示是关键.14、,【解析】
直接利用特称命题的否定解答即可.【详解】因为特称命题的否定是全称命题,所以命题:“,使得”的否定是:,.故答案为:,.【点睛】本题主要考查特称命题的否定,意在考查学生对这些知识的理解掌握水平,属于基础题.15、【解析】
根据极值点个数可确定根的个数,将问题转化为与有两个不同交点,利用数形结合的方式可求得结果.【详解】由题意得:.有两个极值点,有两个不等实根,即有两个不等实根,可等价为与有两个不同交点,,当时,;当时,,在上单调递减,在上单调递增,;当时,;当时,,可得图象如下图所示:由图象可知,若与有两个不同交点,则,解得:,即实数的取值范围为.故答案为:.【点睛】本题考查根据函数极值点的个数求解参数范围的问题,关键是能够将问题转化为导函数为零的方程根的个数,进而进一步转化为两函数交点个数问题的求解,利用数形结合的方式可求得结果.16、【解析】
根据微积分基本定理可得,再结合函数解析式,根据牛顿莱布尼茨定理计算可得;【详解】解:因为所以故答案为:【点睛】本题考查利用定积分求曲边形的面积,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),;(2).【解析】
(1)易得和为导函数的两个零点,代入计算即可求得.(2)求导分析的解集即可.【详解】(1)∵.∴,∵函数在和处都取得极值,故和为的两根.故.即,(2)由(1)得故当,即时,即,解得或.∴函数的单调递增区间为.【点睛】本题主要考查了根据极值点求解参数的问题以及求导分析函数单调增区间的问题.需要根据题意求导,根据极值点为导函数的零点以及导函数大于等于0则原函数单调递增求解集即可.属于中档题.18、(1)见解析;(2)见解析;(3)见解析【解析】分析:(1)本题是一个简单的数字的运算,根据a,b,c,d的已知和未知的结果,做出空格处的结果;(2)假设是否喜爱运动与性别无关,由已知数据可求得观测值,把求得的观测值同临界值进行比较,得到在犯错的概率不超过0.10的前提下不能判断喜爱运动与性别有关;(3)喜爱运动的人数为ξ,ξ的取值分别为0,1,2,3,结合变量对应的事件利用等可能事件的概率公式做出概率,写出分布列和期望.详解:(1)(2)假设:是否喜爱运动与性别无关,由已知数据可求得,因此,在犯错的概率不超过0.10的前提下不能判断喜爱运动与性别有关.(3)统计结果中喜爱运动的中学生所占的频率为.喜爱运动的人数为的取值分别为:0,1,2,3,则有:喜爱运动的人数为的分布列为:因为,所以喜爱运动的人数的值为.点睛:求解离散型随机变量的数学期望的一般步骤为:第一步是“判断取值”,即判断随机变量的所有可能取值,以及取每个值所表示的意义;第二步是“探求概率”,即利用排列组合、枚举法、概率公式,求出随机变量取每个值时的概率;第三步是“写分布列”,即按规范形式写出分布列,并注意用分布列的性质检验所求的分布列或某事件的概率是否正确;第四步是“求期望值”,一般利用离散型随机变量的数学期望的定义求期望的值,对于有些实际问题中的随机变量,如果能够断定它服从某常见的典型分布则此随机变量的期望可直接利用这种典型分布的期望公式求得.19、(1)(2)选择购进该有机蔬菜120千克,能使得获得的利润更大【解析】
(1)求出,,结合题目所给数据,代入回归直线方程中的斜率和截距的最小二乘估计公式中,即可求出线性回归方程;(2)分别计算出购进该有机蔬菜110千克利润的数学期望和120千克利润的数学期望,进行比较即可得到答案。【详解】(1),因为,所以,,所以关于的线性回归方程为.(2)若该超市一天购进110千克这种有机蔬菜,若当天的需求量为100千克时,获得的利润为:(元);若当天的需求量大于等于110千克时,获得的利润为:(元)记为当天的利润(单位:元),则的分布列为450550数学期望是若该超市一天购进120千克这种有机蔬菜,若当天的需求量为100千克时,获得的利润为:(元);若当天的需求量为110千克时,获得的利润为:(元);若当天的需求量大于或等于120千克时,获得的利润为:(元)记为当天的利润(单位:元),则的分布列为400500600数学期望是因为所以选择购进该有机蔬菜120千克,能使得获得的利润更大.【点睛】本题考查
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年氢能源产业链关键技术与市场前景报告
- 2025年新能源汽车自动驾驶功能与车险理赔纠纷处理报告
- 2025-2030年新能源行业供应链金融风险控制与供应链金融产品开发报告
- 2024年院线发行项目项目投资需求报告代可行性研究报告
- 2025及未来5年中国面粉包装袋市场调查、数据监测研究报告
- 2025及未来5年中国胶皮印章市场调查、数据监测研究报告
- 2025及未来5年中国电机转定子市场调查、数据监测研究报告
- 桐城劳动合同(标准版)
- 2025及未来5年中国苯产品馏程测定器市场调查、数据监测研究报告
- 2025及未来5年中国蒸发器与电控柜滑架市场调查、数据监测研究报告
- 术前讨论制度(2025年版)
- 板式换热器清洗施工方案
- 国际会计学教学大纲
- 造影剂过敏反应护理
- 2025至2030中国差压表行业产业运行态势及投资规划深度研究报告
- 2025-2030高考培训行业市场需求调研及未来趋势分析与投资回报评估报告
- 2025年侨办事业单位招聘考试面试题及参考答案
- 兽医行业面试题目及答案
- 形势与政策台湾问题课件
- 2025年CAAC无人机理论考试题库(附答案)
- 混凝土浇筑培训课件
 
            
评论
0/150
提交评论