




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.的展开式中的常数项为()A. B. C. D.2.如图所示,这是一个几何体的三视图,则该几何体的体积为()A. B. C. D.3.复数(为虚数单位)的共轭复数是()A. B. C. D.4.已知直线是圆的对称轴,则实数()A. B. C.1 D.25.如图,在正方体中,分别是的中点,则下列说法错误的是()A. B.平面C. D.平面6.将函数的图象向左平移个单位,得到函数的图象,若在上为增函数,则的最大值为()A.2 B.4 C.6 D.87.设复数(为虚数单位),则的虚部为()A. B. C. D.8.已知函数的图象如图,设是的导函数,则()A. B.C. D.9.下列命题:①在一个列联表中,由计算得,则有的把握确认这两类指标间有关联②若二项式的展开式中所有项的系数之和为,则展开式中的系数是③随机变量服从正态分布,则④若正数满足,则的最小值为其中正确命题的序号为()A.①②③ B.①③④ C.②④ D.③④10.已知命题,,命题q:若恒成立,则,那么()A.“”是假命题 B.“”是真命题C.“”为真命题 D.“”为真命题11.设的展开式的各项系数之和为M,二项式系数之和为N,若240,则展开式中x的系数为()A.300 B.150 C.-150 D.-30012.已知平面向量,的夹角为,,,则()A.4 B.2 C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在xOy平面上,将双曲线的一支及其渐近线和直线、围成的封闭图形记为D,如图中阴影部分,记D绕y轴旋转一周所得的几何体为,过作的水平截面,计算截面面积,利用祖暅原理得出体积为________14.已知是虚数单位,若复数,则____15.若,则的值是_________16.四个不同的小球放入编号为1,2,3,4的四个盒子中,则恰有两个空盒的不同放法共有__________种.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知过点的直线l的参数方程是为参数以平面直角坐标系的原点为极点,x轴的正半轴为极轴,建立极坐标系,曲线C的极坐标方程式为.(1)求直线l的普通方程和曲线C的直角坐标方程;(2)若直线l与曲线C交于两点A,B,且,求实数m的值18.(12分)已知函数=│x+1│–│x–2│.(1)求不等式≥1的解集;(2)若不等式≥x2–x+m的解集非空,求实数m的取值范围.19.(12分)已知锐角的三个内角的对边分别为,且.(1)求角;(2)若,求的取值范围.20.(12分)如图,在空间几何体中,四边形是边长为2的正方形,,,.(Ⅰ)求证:平面;(Ⅱ)求直线与平面所成角的正弦值.21.(12分)设抛物线Γ的方程为y2=4x,点P的坐标为(1,1).(1)过点P,斜率为﹣1的直线l交抛物线Γ于U,V两点,求线段UV的长;(2)设Q是抛物线Γ上的动点,R是线段PQ上的一点,满足2,求动点R的轨迹方程;(3)设AB,CD是抛物线Γ的两条经过点P的动弦,满足AB⊥CD.点M,N分别是弦AB与CD的中点,是否存在一个定点T,使得M,N,T三点总是共线?若存在,求出点T的坐标;若不存在,说明理由.22.(10分)已知椭圆E:的离心率为分别是它的左、右焦点,.(1)求椭圆E的方程;(2)过椭圆E的上顶点A作斜率为的两条直线AB,AC,两直线分别与椭圆交于B,C两点,当时,直线BC是否过定点?若是求出该定点,若不是请说明理由.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】
化简二项式的展开式,令的指数为零,求得常数项.【详解】二项式展开式的通项为,令,故常数项为,故选C.【点睛】本小题主要考查二项式展开式的通项公式,考查二项式展开式中的常数项,属于基础题.2、A【解析】由三视图可知:该几何体分为上下两部分,下半部分是长、宽、高分别为的长方体,上半部分为底面半径为1,高为2的两个半圆柱,故其体积为,故选A.3、D【解析】
化简,由共轭复数的定义即可得到答案。【详解】由于,所以的共轭复数是,故答案选D.【点睛】本题考查复数乘除法公式以及共轭复数的定义。4、B【解析】
由于直线是圆的对称轴,可知此直线过圆心,将圆心坐标代入直线方程中可求出的值【详解】解:圆的圆心为,因为直线是圆的对称轴,所以直线过圆心,所以,解得,故选:B【点睛】此题考查直线与圆的位置关系,利用了圆的对称性求解,属于基础题5、C【解析】
以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,利用向量法能求出结果.【详解】∵在正方体ABCD-A1B1C1D1中,M,N分别是BC1,CD1的中点,
∴以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,
设正方体ABCD-A1B1C1D1中,棱长为2,
则B(2,2,0),C1(0,2,2),M(1,2,1),D1(0,0,2),C(0,2,0),N(0,1,1),
∴MN⊥CC1,故A正确;∴MN⊥平面ACC1A1,故B成立;
∵∴MN和AB不平行,故C错误;
平面ABCD的法向量又MN⊄平面ABCD,∴MN∥平面ABCD,故D正确.
故选C.【点睛】本题考查命题的真假判断,考空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.6、C【解析】,向左平移个单位,得到函数的图象,所以,因为,所以即的最大值为6,选C.点睛:三角函数的图象变换,提倡“先平移,后伸缩”,但“先伸缩,后平移”也常出现在题目中,所以也必须熟练掌握.无论是哪种变形,切记每一个变换总是对字母而言.由求增区间;由求减区间.7、C【解析】分析:先化简复数z,再求z的虚部.详解:由题得=,故复数z的虚部为-1,故答案为C.点睛:(1)本题主要考查复数的运算,意在考查学生对该知识的掌握水平和运算能力.(2)复数的实部是a,虚部为b,不是bi.8、D【解析】
由题意,分析、、所表示的几何意义,结合图形分析可得答案.【详解】根据题意,由导数的几何意义:表示函数在处切线的斜率,表示函数在处切线的斜率,,为点和点连线的斜率,结合图象可得:,故选:D.【点睛】本题考查导数的几何意义,涉及直线的斜率比较,属于基础题.9、B【解析】
根据可知①正确;代入可求得,利用展开式通项,可知时,为含的项,代入可求得系数为,②错误;根据正态分布曲线的对称性可知③正确;由,利用基本不等式求得最小值,可知④正确.【详解】①,则有的把握确认这两类指标间有关联,①正确;②令,则所有项的系数和为:,解得:则其展开式通项为:当,即时,可得系数为:,②错误;③由正态分布可知其正态分布曲线对称轴为,③正确;④,,(当且仅当,即时取等号),④正确.本题正确选项:【点睛】本题考查命题真假性的判断,涉及到独立性检验的基本思想、二项展开式各项系数和与指定项系数的求解、正态分布曲线的应用、利用基本不等式求解和的最小值问题.10、D【解析】
分别判断命题的真假性,然后再判断每个选项的真假【详解】,即不存在,命题是假命题若恒成立,⑴时,,即符合条件⑵时,则解得,则命题为真命题故是真命题故选【点睛】本题考查了含有“或”“且”“非”命题的真假判定,只需将命题的真假进行判定出来即可,需要解答一元二次不等式,属于基础题.11、B【解析】
分别求得二项式展开式各项系数之和以及二项式系数之和,代入,解出的值,进而求得展开式中的系数.【详解】令,得,故,解得.二项式为,展开式的通项公式为,令,解得,故的系数为.故选B.【点睛】本小题主要考查二项式展开式系数之和、二项式展开式的二项式系数之和,考查求指定项的系数,属于中档题.12、B【解析】
将两边平方,利用向量数量积的运算求解得出数值,然后开方得到结果.【详解】依题意.故选B.【点睛】本小题主要考查向量的数量积运算,考查向量模的坐标表示,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、.【解析】分析:由已知中过(0,y)(0≤y≤4)作Ω的水平截面,计算截面面积,利用祖暅原理得出Ω的体积.详解:在xOy平面上,将双曲线的一支及其渐近线和直线y=0,y=4围成的封闭图形记为D,如图中阴影部分.则直线y=a与渐近线交于一点A(,a)点,与双曲线的一支交于B(,a)点,记D绕y轴旋转一周所得的几何体为Ω.过(0,y)(0≤y≤4)作Ω的水平截面,则截面面积S=,利用祖暅原理得Ω的体积相当于底面面积为9π高为4的圆柱的体积,∴Ω的体积V=9π×4=36π,故答案为36π点睛:本题考查的知识点是类比推理,其中利用祖暅原理将不规则几何体的体积转化为底面面积为9π高为4的圆柱的体积,是解答的关键.祖暅原理也可以成为中国的积分,将图形的横截面的面积在体高上积分,得到几何体的体积.14、【解析】分析:根据复数模的公式直接求解.详解:,所以.点睛:复数,模的计算公式.15、2或7【解析】
由组合数的性质,可得或,求解即可.【详解】,或,解得或,故答案为2或7.【点睛】本题考查组合与组合数公式,属于基础题.组合数的基本性质有:①;②;③.16、84【解析】分析:先选两个空盒子,再把4个小球分为,两组,分到其余两个盒子里,即可得到答案.详解:先选两个空盒子,再把4个小球分为,两组,故有.故答案为84.点睛:本题考查的是排列、组合的实际应用,考查了计数原理,注意这种有条件的排列要分两步走,先选元素再排列.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),;(2)或【解析】分析:(1)直接利用转换关系把参数方程和极坐标方程与直角坐标方程进行转化.
(2)利用方程组求出一元二次方程,利用根和系数的关系式求出结果.详解:(1)过点的直线l的参数方程是为参数.转化为直角坐标方程为:,曲线C的极坐标方程式为.转化为直角坐标方程为:.(2)直线l与曲线C交于两点A,B,则:把为参数,代入曲线方程,整理得:.由于,故:.解得:或点睛:本题考查的知识要点:参数方程和极坐标方程与直角坐标方程的转化,一元二次方程根与系数的关系的应用.属基础题.18、(1);(2).【解析】
(1)由于f(x)=|x+1|﹣|x﹣2|,解不等式f(x)≥1可分﹣1≤x≤2与x>2两类讨论即可解得不等式f(x)≥1的解集;(2)依题意可得m≤[f(x)﹣x2+x]max,设g(x)=f(x)﹣x2+x,分x≤1、﹣1<x<2、x≥2三类讨论,可求得g(x)max,从而可得m的取值范围.【详解】解:(1)∵f(x)=|x+1|﹣|x﹣2|,f(x)≥1,∴当﹣1≤x≤2时,2x﹣1≥1,解得1≤x≤2;当x>2时,3≥1恒成立,故x>2;综上,不等式f(x)≥1的解集为{x|x≥1}.(2)原式等价于存在x∈R使得f(x)﹣x2+x≥m成立,即m≤[f(x)﹣x2+x]max,设g(x)=f(x)﹣x2+x.由(1)知,g(x),当x≤﹣1时,g(x)=﹣x2+x﹣3,其开口向下,对称轴方程为x1,∴g(x)≤g(﹣1)=﹣1﹣1﹣3=﹣5;当﹣1<x<2时,g(x)=﹣x2+3x﹣1,其开口向下,对称轴方程为x∈(﹣1,2),∴g(x)≤g()1;当x≥2时,g(x)=﹣x2+x+3,其开口向下,对称轴方程为x2,∴g(x)≤g(2)=﹣4+2+3=1;综上,g(x)max,∴m的取值范围为(﹣∞,].【点睛】本题考查绝对值不等式的解法,去掉绝对值符号是解决问题的关键,突出考查分类讨论思想与等价转化思想、函数与方程思想的综合运用,属于难题.19、(1);(2).【解析】试题分析:(1)运用三角形的余弦定理,可得sinC,可得角C;
(2)运用正弦定理和两角差的正余弦公式,结合函数的单调性,即可得到所求范围.试题解析:(1)由余弦定理,可得,所以,所以,又,所以.(2)由正弦定理,,所以,因为是锐角三角形,所以得,所以,,即.20、(1)证明见解析.(2).【解析】试题分析:(1)先根据平几知识计算得,再根据线面垂直判定定理得结论,(2)先根据条件建立空间直角坐标系,设立各点坐标,根据方程组解得平面法向量,利用向量数量积得向量夹角,最后根据线面角与向量夹角互余关系求结果.试题解析:(1)证明:等腰梯形中,故在中,,所以平面(2)作于,以为轴建立如图的空间直角坐标系,则求得平面的法向量为又,所以即与平面所成角的正弦值等于21、(1)4(2)(3y﹣1)2=8(3x﹣1)(3)存在,T(3,0)【解析】
(1)根据条件可知直线l方程为x+y﹣2=0,联立直线与抛物线,根据弦长公式可得结果;(2)设R(x0,y0),Q(x,y),根据2可得x,y,将其代入抛物线方程即可得到结果;(3)设A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4),设AB的方程为y=k(x﹣1)+1,联立,根据韦达定理和中点公式可得点的坐标,同理可得的坐标,由斜率公式得的斜率,由点斜式可得的方程,根据方程可得结果.【详解】(1)根据条件可知直线l方程为y=﹣(x﹣1)+1,即x+y﹣2=0,联立,整理得x2﹣8x+4=0,则xU+xV=8,xUxV=4,所以线段UV•|xU﹣xV|•4;(2)设R(x0,y0),Q(x,y),则(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 橡胶橡胶体育赛事用品创新创业项目商业计划书
- 海水养殖尾水循环利用技术创新创业项目商业计划书
- 2025年航空行业民用飞行器市场前景研究报告
- 森林气候变化适应创新创业项目商业计划书
- 小刺猬的烦恼课件
- 高危岗位员工安全操作标准
- 控辍保学工作成效总结报告范文
- 员工工作总结写作技巧与模板
- 软件系统部署步骤与常见问题排查指南
- 幻灯机与投影仪装配调试工节假日后复工安全考核试卷含答案
- 光伏电站施工规范及注意事项
- 水果采购协议样本
- 中职英语(高教版2021基础模块1)Part01-Unit2-Transportation
- 哲学与人生 第二课 树立科学的世界观2.1
- 2024-2030年中国止痛药品市场供需形势及未来前景动态研究研究报告
- 风电110KV升压站土建工程施工方案
- 2018低压电力线高速载波通信互联互通技术规范第3部分:检验方法
- 房屋漏水维修合同书范文
- 超声科医院感染管理:培训与演练
- 中药草乌课件
- DL-T 892-2021 电站汽轮机技术条件
评论
0/150
提交评论