吉林省扶余市第一中学2022-2023学年高二数学第二学期期末达标测试试题含解析_第1页
吉林省扶余市第一中学2022-2023学年高二数学第二学期期末达标测试试题含解析_第2页
吉林省扶余市第一中学2022-2023学年高二数学第二学期期末达标测试试题含解析_第3页
吉林省扶余市第一中学2022-2023学年高二数学第二学期期末达标测试试题含解析_第4页
吉林省扶余市第一中学2022-2023学年高二数学第二学期期末达标测试试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023高二下数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若的展开式中含有项的系数为8,则()A.2 B. C. D.2.已知实数,满足,则与的关系是()A. B. C. D.3.下列命题中:①“x>y”是“x②已知随机变量X服从正态分布N3,  ③线性回归直线方程y=bx+④命题“∃x∈R,x2+x+1>0其中正确的个数是()A.1 B.2 C.3 D.44.某工厂生产某种产品的产量(吨)与相应的生产能耗(吨标准煤)有如下几组样本数据:根据相关检验,这组样本数据具有线性相关关系,通过线性回归分析,求得其回归直线的斜率为,则这组样本数据的回归直线方程是()A. B. C. D.5.已知命题p:若复数,则“”是“”的充要条件;命题q:若函数可导,则“”是“x0是函数的极值点”的充要条件.则下列命题为真命题的是()A. B. C. D.6.如图,线段AB=8,点C在线段AB上,且AC=2,P为线段CB上一动点,点A绕着C旋转后与点B绕点P旋转后重合于点D,设CP=x,△CPD的面积为f(x).求f(x)的最大值().A.B.2C.3 D.7.已知随机变量Xi满足P(Xi=1)=pA.E(X1B.E(X1C.E(X1D.E(X18.设n=0π2A.20 B.-20 C.120 D.-1209.已知曲线C:y=,曲线C关于y轴的对称曲线C′的方程是()A.y=﹣ B.y=﹣ C.y= D.y=10.已知函数,,若在上有且只有一个零点,则的范围是()A. B.C. D.11.已知函数是定义在上的奇函数,当时,,则()A.12 B.20 C.28 D.12.设复数满足,则的共轭复数的虚部为()A.1 B.-1 C. D.二、填空题:本题共4小题,每小题5分,共20分。13.函数在处的切线方程是______.14.若复数z满足方程,其中i为虚数单位,则________.15.在的二项展开式中,项的系数为_____(结果用数值表示).16.已知经停某站的高铁列车有100个车次,随机从中选取了40个车次进行统计,统计结果为:10个车次的正点率为0.97,20个车次的正点率为0.98,10个车次的正点率为0.99,则经停该站的所有高铁列车正点率的标准差的点估计值为______(精确到0.001).三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)中央政府为了应对因人口老龄化而造成的劳动力短缺等问题,拟定出台“延迟退休年龄政策”.为了了解人们对“延迟退休年龄政策”的态度,责成人社部进行调研.人社部从网上年龄在15~65岁的人群中随机调查100人,调查数据的频率分布直方图如图所示,支持“延迟退休年龄政策”的人数与年龄的统计结果如表:年龄(岁)支持“延迟退休年龄政策”人数155152817(I)由以上统计数据填写下面的列联表;年龄低于45岁的人数年龄不低于45岁的人数总计支持不支持总计(II)通过计算判断是否有的把握认为以45岁为分界点的不同人群对“延迟退休年龄政策”的态度有差异.0.1000.0500.0100.0012.7063.8416.63510.828参考公式:18.(12分)设,函数.(1)若,求曲线在处的切线方程;(2)求函数单调区间(3)若有两个零点,求证:.19.(12分)4月23日是“世界读书日”,某中学在此期间开展了一系列的读书教育活动.为了解高三学生课外阅读情况,采用分层抽样的方法从高三某班甲、乙、丙、丁四个小组中随机抽取10名学生参加问卷调查.各组人数统计如下:(1)从参加问卷调查的10名学生中随机抽取两名,求这两名学生来自同一个小组的概率;(2)在参加问卷调查的10名学生中,从来自甲、丙两个小组的学生中随机抽取两名,用表示抽得甲组学生的人数,求的分布列和数学期望.20.(12分)知数列的前项和.(1)求的通项公式;(2)设,求数列的前项和.21.(12分)已知复数,其中为虚数单位,.(1)若,求实数的值;(2)若在复平面内对应的点位于第一象限,求实数的取值范围.22.(10分)已知函数,,.(1)若,求不等式的解集;(2)若对任意,不等式恒成立,求实数的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】展开式中含有项的系数,,故选A.2、C【解析】

设,,则,对进行平方展开化简得,代入得,两式相加即可.【详解】设,,则且,等式两边同时平方展开得:,即令等式中,化简后可得:两式相加可得故选:C【点睛】本题考查了代数式的计算化简求值,考查了换元法,属于中档题3、B【解析】

①充要条件即等价条件,不等价则不充要;②根据正态分布的特征,且μ=3,得到P(X≤0)=P(X≥6)=1-P(X≤6),判断其正确;③根据回归直线的特征,得出其正确;④写出命题p的否定¬p,判定其错误;最后得出结果.【详解】对于①,由x>y≥0,可以推出x2>y2,充分性成立,x2对于②,根据题意得P(X≤0)=P(X≥6)=1-P(X≤6)=1-0.72=0.28,所以②正确;对于③,根据回归直线一定会过样本中心点,所以③正确;对于④,命题“∃x∈R,x2所以正确命题有两个,故选B.【点睛】该题考查的是有关判断命题的正误的问题,涉及到的知识点有充要条件,正态分布,含有一个量词的命题的否定,回归直线方程的特征,属于简单题目.4、C【解析】由题意可知,,线性回归方程过样本中心,所以只有C选项满足.选C.【点睛】线性回归方程过样本中心,所以可以代入四个选项进行逐一检验.5、C【解析】

利用复数相等和函数极值点的概念可判断p,q的真假;利用真值表判断复合命题的真假.【详解】由复数相等的概念得到p:真;若函数可导,则“”是“x0是函数的极值点”是错误的,当是导函数的变号零点,即在这个点附近,导函数的值异号,此时才是极值点,故q:假,为真.∴由真值表知,为真,故选C.【点睛】本题考查真值表,复数相等的概念,求极值的方法.由简单命题和逻辑连接词构成的复合命题的真假可以用真值表来判断,反之根据复合命题的真假也可以判断简单命题的真假.假若p且q真,则p真,q也真;若p或q真,则p,q至少有一个真;若p且q假,则p,q至少有一个假.6、A【解析】试题分析:利用三角形的构成条件,建立不等式,可求x的取值范围;三角形的周长是一个定值8,故其面积可用海伦公式表示出来,再利用基本不等式,即可求f(x)的最大值.解:(1)由题意,DC=2,CP=x,DP=6-x,根据三角形的构成条件可得x+6-x>2,2+6-x>x,2+x>6-x,解得2<x<4;三角形的周长是一个定值8,故其面积可用海伦公式表示出来,即f(x)=当且仅当4-x=-2+x,即x=3时,f(x)的最大值为,故选A.考点:函数类型点评:本题考查根据实际问题选择函数类型,本题中求函数解析式用到了海伦公式,7、C【解析】

根据题目已知条件写出X1,【详解】依题意可知:X01P1-pX01P1-p由于12<p1<p2<1,不妨设【点睛】本小题主要考查随机变量分布列期望和方差的计算,考查分析与阅读理解能力,属于中档题.8、B【解析】

先利用微积分基本定理求出n的值,然后利用二项式定理展开式通项,令x的指数为零,解出相应的参数值,代入通项可得出常数项的值。【详解】∵n=0二项式x-1x6令6-2r=0,得r=3,因此,二项式x-1x6故选:B.【点睛】本题考查定积分的计算和二项式指定项的系数,解题的关键就是微积分定理的应用以及二项式展开式通项的应用,考查计算能力,属于中等题。9、A【解析】

设所求曲线上任意一点,由关于直线的对称的点在已知曲线上,然后代入已知曲线,即可求解.【详解】设所求曲线上任意一点,则关于直线的对称的点在已知曲线,所以,故选A.【点睛】本题主要考查了已知曲线关于直线的对称的曲线方程的求解,其步骤是:在所求曲线上任取一点,求得其关于直线的对称点,代入已知曲线求解是解答的关键,着重考查了推理与运算能力,属于中档试题.10、B【解析】

将问题转化为在有且仅有一个根,考虑函数,的单调性即可得解.【详解】由题,所以不是函数的零点;当,有且只有一个零点,即在有且仅有一个根,即在有且仅有一个根,考虑函数,由得:,由得:所以函数在单调递减,单调递增,,,,,要使在有且仅有一个根,即或则的范围是故选:B【点睛】此题考查根据函数零点求参数的取值范围,关键在于等价转化,利用函数单调性解决问题,常用分离参数处理问题.11、A【解析】

先计算出的值,然后利用奇函数的性质得出可得出的值。【详解】当时,,则,由于函数是定义在上的奇函数,所以,,故选:A.【点睛】本题考查利用函数奇偶性求值,求函数值时要注意根据自变量的范围选择合适的解析式,合理利用奇偶性是解本题的关键,考查运算求解能力,属于基础题。12、A【解析】

先求解出的共轭复数,然后直接判断出的虚部即可.【详解】因为,所以,所以的虚部为.故选:A.【点睛】本题考查共轭复数的概念以及复数的实虚部的认识,难度较易.复数的实部为,虚部为.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】函数,求导得:,当时,,即在处的切线斜率为2.又时,,所以切线为:,整理得:.故答案为:.点睛:求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出切点及斜率,其求法为:设是曲线上的一点,则以的切点的切线方程为:.若曲线在点的切线平行于轴(即导数不存在)时,由切线定义知,切线方程为.14、2【解析】

设,利用复数的乘法运算计算得到即可.【详解】由已知,设,则,所以,解得,故,.故答案为:2.【点睛】本题考查复数的乘法、复数模的运算,涉及到复数相等的概念,是一道容易题.15、1【解析】

通过二项展开式的通项公式求出展开式的通项,利用的指数为2,求出展开式中的系数.【详解】解:展开式的通项为.令得到展开式中的系数是.故答案为:1.【点睛】本题是基础题,考查利用二项展开式的通项公式解决二项展开式的特定项问题.考查计算能力.16、【解析】

根据平均数的公式,求出平均数,再根据标准差公式求出标准差即可.【详解】由题意可知:所有高铁列车平均正点率为:.所以经停该站的所有高铁列车正点率的标准差的点估计值为:故答案为:【点睛】本题考查了平均数和标准差的运算公式,考查了应用数学知识解决实际问题的能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(I)列联表见解析;(II)有.【解析】

(I)先根据频率分布直方图算出各数据,再结合支持“延迟退休年龄政策”的人数与年龄的统计结表求解;(II)算出观测值与3.841比较.【详解】(I)由统计数据填写的列联表如下:年龄低于45岁的人数年龄不低于45岁的人数总计支持354580不支持15520总计5050100(II)计算观测值,有的把握认为以45岁为分界点的同人群对“延迟退休年龄政策”的态度有差异.【点睛】本题考查频率分布直方图与独立性检验.18、(1);(2)见解析;(3)见解析【解析】

分析:(1)求出,由的值可得切点坐标,求出的值,可得切线斜率,利用点斜式可得曲线在点处的切线方程;(2)求出,分两种情况讨论的范围,在定义域内,分别令,可得函数的增区间,,可得函数的减区间;(3)原不等式等价于令,则,于是,,利用导数可证明,从而可得结果.详解:在区间上,.(1)当时,则切线方程为,即(2)若,则,是区间上的增函数,若,令得:.在区间上,,函数是增函数;在区间上,,函数是减函数;(3)设,原不等式令,则,于是.设函数,求导得:故函数是上的增函数,即不等式成立,故所证不等式成立.点睛:本题是以导数的运用为背景的函数综合题,主要考查了函数思想,化归思想,抽象概括能力,综合分析问题和解决问题的能力,属于较难题,近来高考在逐年加大对导数问题的考查力度,不仅题型在变化,而且问题的难度、深度与广度也在不断加大,本部分的要求一定有三个层次:第一层次主要考查求导公式,求导法则与导数的几何意义;第二层次是导数的简单应用,包括求函数的单调区间、极值、最值等;第三层次是综合考查,包括解决应用问题,将导数内容和传统内容中有关不等式甚至数列及函数单调性有机结合,设计综合题.19、(1);(2)答案见解析.【解析】试题分析:(1)从参加问卷调查的10名学生中随机抽取两名的取法共有种,来自同一小组的取法共有,所以.(2)的可能取值为0,1,2,,,,写出分布列,求出期望.试题解析:(1)由已知得,问卷调查中,从四个小组中抽取的人数分别为3,4,2,1,从参加问卷调查的10名学生中随机抽取两名的取法共有种,这两名学生来自同一小组的取法共有

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论