




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.数学归纳法证明1n+1+1A.12k+2 B.12k+1 C.12.当生物死亡后,其体内原有的碳的含量大约每经过年衰减为原来的一半,这个时间称为“半衰期”.在一次考古挖掘中,考古学家发现一批鱼化石,经检测其碳14含量约为原始含量的,则该生物生存的年代距今约()A.万年 B.万年 C.万年 D.万年3.设,则A. B. C. D.4.在等差数列{an}中,若S9=18,Sn=240,=30,则n的值为A.14 B.15 C.16 D.175.在等差数列中,,,则的前10项和为()A.-80 B.-85 C.-88 D.-906.函数y=2x2–e|x|在[–2,2]的图像大致为()A. B. C. D.7.如图,线段AB=8,点C在线段AB上,且AC=2,P为线段CB上一动点,点A绕着C旋转后与点B绕点P旋转后重合于点D,设CP=x,△CPD的面积为f(x).求f(x)的最大值().A.B.2C.3 D.8.已知复数,则复数的模为()A.2 B. C.1 D.09.已知集合,则()A. B.C. D.10.某煤气站对外输送煤气时,用1至5号五个阀门控制,且必须遵守以下操作规则:①若开启3号,则必须同时开启4号并且关闭2号;②若开启2号或4号,则关闭1号;③禁止同时关闭5号和1号.则阀门的不同开闭方式种数为()A.7 B.8 C.11 D.1411.已知点为抛物线:的焦点.若过点的直线交抛物线于,两点,交该抛物线的准线于点,且,,则()A. B.0 C.1 D.212.已知,,,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.集合,集合,若,则实数_________.14.已知复数满足,则等于______.15.从位女生,位男生中选人参加科技比赛,且至少有位女生入选,则不同的选法共有_____________种.(用数字填写答案)16.向量经过矩阵变换后的向量是________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数(1)讨论的极值;(2)当时,记在区间的最大值为M,最小值为m,求.18.(12分)已知函数.(1)若在点处的切线方程为,求的值;(2)若是函数的两个极值点,试比较与的大小.19.(12分)设不等式表示的平面区别为.区域内的动点到直线和直线的距离之积为1.记点的轨迹为曲线.过点的直线与曲线交于、两点.(1)求曲线的方程;(1)若垂直于轴,为曲线上一点,求的取值范围;(3)若以线段为直径的圆与轴相切,求直线的斜率.20.(12分)某仪器经过检验合格才能出厂,初检合格率为;若初检不合格,则需要进行调试,经调试后再次对其进行检验;若仍不合格,作为废品处理,再检合格率为.每台仪器各项费用如表:项目生产成本检验费/次调试费出厂价金额(元)(1)求每台仪器能出厂的概率;(2)求生产一台仪器所获得的利润为元的概率(注:利润=出厂价-生产成本-检验费-调试费);(3)假设每台仪器是否合格相互独立,记为生产两台仪器所获得的利润,求的分布列和数学期望.21.(12分)已知函数.(1)讨论的单调性;(2)当时,,记函数在上的最大值为,证明:.22.(10分)在进行一项掷骰子放球游戏中,规定:若掷出1点,甲盒中放一球;若掷出2点或3点,乙盒中放一球;若掷出4点或5点或6点,丙盒中放一球,前后共掷3次,设分别表示甲,乙,丙3个盒中的球数.(Ⅰ)求的概率;(Ⅱ)记求随机变量的概率分布列和数学期望.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
求出当n=k时,左边的代数式,当n=k+1时,左边的代数式,相减可得结果.【详解】当n=k时,左边的代数式为1k+1当n=k+1时,左边的代数式为1k+2故用n=k+1时左边的代数式减去n=k时左边的代数式的结果为:12k+1【点睛】本题考查用数学归纳法证明不等式,注意式子的结构特征,以及从n=k到n=k+1项的变化,属于中档题.2、C【解析】
根据实际问题,可抽象出,按对数运算求解.【详解】设该生物生存的年代距今是第个5730年,到今天需满足,解得:,万年.故选C.【点睛】本题考查了指数和对数运算的实际问题,考查了转化与化归和计算能力.3、C【解析】分析:利用复数的除法运算法则:分子、分母同乘以分母的共轭复数,化简复数,然后求解复数的模.详解:,则,故选c.点睛:复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.4、B【解析】试题分析:由等差数列的性质知;.考点:等差数列的性质、前项和公式、通项公式.5、A【解析】
用待定系数法可求出通项,于是可求得前10项和.【详解】设的公差为,则,,所以,,前10项和为.【点睛】本题主要考查等差数列的通项公式,求和公式,比较基础.6、D【解析】试题分析:函数f(x)=2x2–e|x|在[–2,2]上是偶函数,其图象关于y轴对称,因为f(2)=8-e2,0<8-e2<1,所以排除A,B选项;当x∈[0,2]时,y'=4x-ex有一零点,设为7、A【解析】试题分析:利用三角形的构成条件,建立不等式,可求x的取值范围;三角形的周长是一个定值8,故其面积可用海伦公式表示出来,再利用基本不等式,即可求f(x)的最大值.解:(1)由题意,DC=2,CP=x,DP=6-x,根据三角形的构成条件可得x+6-x>2,2+6-x>x,2+x>6-x,解得2<x<4;三角形的周长是一个定值8,故其面积可用海伦公式表示出来,即f(x)=当且仅当4-x=-2+x,即x=3时,f(x)的最大值为,故选A.考点:函数类型点评:本题考查根据实际问题选择函数类型,本题中求函数解析式用到了海伦公式,8、C【解析】
根据复数的除法运算求出,然后再求出即可.【详解】由题意得,∴.故选C.【点睛】本题考查复数的除法运算和复数模的求法,解题的关键是正确求出复数,属于基础题.9、D【解析】,所以,故选B.10、A【解析】
分两类解决,第一类:若开启3号,然后对2号和4号开启其中一个即可判断出1号和5号情况,第二类:若关闭3号,关闭2号关闭4号,对1号进行讨论,即可判断5号,由此可计算出结果.【详解】解:依题意,第一类:若开启3号,则开启4号并且关闭2号,此时关闭1号,开启5号,此时有1种方法;第二类:若关闭3号,①开启2号关闭4号或关闭2号开启4号或开启2号开启4号时,则关闭1号,开启5号,此时有种3方法;②关闭2号关闭4号,则开启1号关闭5号或开启1号开启5号或关闭1号,开启5号,此时有种3方法;综上所述,共有种方式.故选:A.【点睛】本题考查分类加法计数原理,属于中档题.11、B【解析】
将长度利用相似转换为坐标关系,联立直线和抛物线方程,利用韦达定理求得答案.【详解】易知:焦点坐标为,设直线方程为:如图利用和相似得到:,【点睛】本题考查了抛物线与直线的关系,相似,意在考查学生的计算能力.12、A【解析】
由指数函数及对数函数的性质比较大小,即可得出结论.【详解】故选:A.【点睛】本题考查三个数的大小的比较,是基础题,解题时要认真审题,注意指数函数和对数函数的性质的合理运用.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
解一元二次方程化简集合的表示,再根据可以分类求出实数的值.【详解】.因为,所以.当时,这时说明方程无实根,所以;当时,这时说明是方程的实根,故;当时,这时说明是方程的实根,故;因为方程最多有一个实数根,故不可能成立.故答案为:14、【解析】
先求出复数z,再求|z|.【详解】由题得.故答案为【点睛】(1)本题主要考查复数的计算和复数的模的计算,意在考查学生对这些知识的掌握水平和基本的计算能力.(2)复数的模.15、【解析】
首先想到所选的人中没有女生,有多少种选法,再者需要确定从人中任选人的选法种数,之后应用减法运算,求得结果.【详解】根据题意,没有女生入选有种选法,从名学生中任意选人有种选法,故至少有位女生入选,则不同的选法共有种,故答案是.【点睛】该题是一道关于组合计数的题目,并且在涉及到“至多、至少”问题时多采用间接法,一般方法是得出选人的选法种数,间接法就是利用总的减去没有女生的选法种数,该题还可以用直接法,分别求出有名女生和有两名女生分别有多少种选法,之后用加法运算求解.16、【解析】
根据即可求解。【详解】根据矩阵对向量的变换可得故答案为:【点睛】本题考查向量经矩阵变换后的向量求法,关键掌握住变换的运算法则。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)答案不唯一,具体见解析(2)答案不唯一,具体见解析【解析】
(1)求导函数,由导函数确定函数的单调性后可确定极值;(2)由(1)可知在区间上的单调性,从而可求得极值和最值.【详解】(1)当时,,在上单增,无极值当时,,单减区间是,单增区间是,所以,无极大值.(2)由(1)知在单减,单增当时,当时,【点睛】本题考查用导数研究函数的极值与最值.解题时可求出导函数后确定出函数的单调性,然后可确定极值、最值.18、(1);(2).【解析】
(1)先求得切点的坐标,然后利用切点和斜率列方程组,解方程组求得的值.(2)将转化为只含有的式子.对函数求导,利用二次函数零点分布的知识求得的取值范围并利用韦达定理写出的关系式.化简的表达式,并利用构造函数法求得.用差比较法比较出与的大小关系.【详解】(1)根据题意可求得切点为,由题意可得,,∴,即,解得.(2)∵,∴,则.根据题意可得在上有两个不同的根.即,解得,且.∴.令,则,令,则当时,,∴在上为减函数,即,∴在上为减函数,即,∴,又∵,∴,即,∴.【点睛】本小题主要考查利用导数求解有关切线方程的问题,考查利用导数研究函数的极值点问题,难度较大.19、(1);(1);(3)【解析】
(1)根据“区域内的动点到直线和直线的距离之积为”列方程,化简后求得曲线的方程.(1)求得两点的坐标,利用平面向量数量积的坐标运算化简,由此求得的取值范围.(3)设出直线的方程,联立直线的方程和曲线,写出韦达定理.求得以为直径的圆的圆心和直径,根据圆与轴相切列方程,解方程求得直线的斜率.【详解】(1)设,依题意①,因为满足不等式,所以①可化为.(1)将代入曲线的方程,解得.取,设,因为为曲线上一点,故.则.即的取值范围是.(3)设直线的方程是,.联立,消去得,所以.设线段的中点为,则,所以..因为以线段为直径的圆与轴相切,所以,即,化简得.所以直线的斜率为.【点睛】本小题主要考查双曲线标准方程及其性质,考查一元二次方程根与系数关系,考查中点坐标公式、点到直线距离公式,考查运算求解能力,属于难题.20、(1);(2)(3)见解析【解析】
试题分析:(Ⅰ)每台仪器能出厂的对立事件为不能出厂,根据对立事件的概率可得结果;(Ⅱ)由表可知生产一台仪器所获得的利润为元即初检不合格再次检测合格,根据相互独立事件同时发生的概率可得结果;(Ⅲ)由题意可得可取,,,,,,根据相互独立事件同时发生的概率计算出概率,可得分布列及期望.试题解析:(Ⅰ)记每台仪器不能出厂为事件,则,所以每台仪器能出厂的概率.(Ⅱ)生产一台仪器利润为1600的概率.(Ⅲ)可取,,,,,.,,,,,.的分布列为:380035003200500200.21、(1)单调递减区间为,单调递增区间为;(2)见解析.【解析】
(1)利用导数求函数的单调性即可;(2)对求导,得,因为,所以,令,求导得在上单调递增,,使得,进而得在上单调递增,在上单调递减;所以,令,求导得在上单调递增,进而求得m的范围.【详解】(1)因为,所以,当时,;当时,,故的单调递减区间为,单调递增区间为.(2)当时,,则,当时,,令,则,所以在上单调递增,因为,,所以存在,使得,即,即.故当时,,此时;当时,,此时.即在上单调递增,在上单调递减.则.令,,则.所以在上单调递增,所以,.故成立.【点睛】本题考查了利用导数求函数的单调性和取值范围,也考
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年期房买卖合同样本
- 肝衰竭护理考试题及答案
- 甘肃省武威市第第三中学教育集团2025-2026学年七年级上学期10月期中道德与法治试题(含答案)
- 分子生物考试题及答案
- 防突常识考试题及答案
- 儿童服饰考试题目及答案
- 电工审核考试题目及答案
- 2025成都市简约的房屋买卖合同示例
- 大学必修乐理考试题及答案
- 大道之行中考试题及答案
- 工业皮带专业知识培训课件
- 新生儿患者安全知识培训课件
- 陈独秀生平事迹
- 食管癌免疫治疗的耐药机制与克服策略
- 应急第一响应人理论考试试卷(含答案)
- 2024年氯化工艺考试题库附答案
- 2023广西旅发南国体育投资集团限公司招聘25人历年高频难易度、易错点模拟试题(共500题)附带答案详解
- 机场绿色能源管理与实践
- 新入职财务人员培训方案
- 洗涤厂合伙协议
- 信息系统权限审批表医生
评论
0/150
提交评论