云南省玉溪市2023年数学高二下期末经典试题含解析_第1页
云南省玉溪市2023年数学高二下期末经典试题含解析_第2页
云南省玉溪市2023年数学高二下期末经典试题含解析_第3页
云南省玉溪市2023年数学高二下期末经典试题含解析_第4页
云南省玉溪市2023年数学高二下期末经典试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023高二下数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某同学家门前有一笔直公路直通长城,星期天,他骑自行车匀速前往旅游,他先前进了,觉得有点累,就休息了一段时间,想想路途遥远,有些泄气,就沿原路返回骑了,当他记起诗句“不到长城非好汉”,便调转车头继续前进.则该同学离起点的距离与时间的函数关系的图象大致为()A. B.C. D.2.甲乙丙丁四名学生报名参加四项体育比赛,每人只报一项,记事件“四名同学所报比赛各不相同”,事件“甲同学单独报一项比赛”,则()A. B. C. D.3.已知函数,函数有四个不同的零点,从小到大依次为,,,,则的取值范围为()A. B. C. D.4.已知三个正态分布密度函数(,)的图象如图所示则()A.B.C.D.5.已知随机变量服从二项分布,则()A. B. C. D.6.我国古代数学名著《九章算术》中割圆术有:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣.”其体现的是一种无限与有限的转化过程,比如在中“…”即代表无限次重复,但原式却是个定值x,这可以通过方程确定出来x=2,类似地不难得到=()A. B.C. D.7.某体育彩票规定:从01到36个号中抽出7个号为一注,每注2元.某人想先选定吉利号18,然后再从01到17个号中选出3个连续的号,从19到29个号中选出2个连续的号,从30到36个号中选出1个号组成一注.若这个人要把这种要求的号全买,至少要花的钱数为()A.2000元 B.3200元 C.1800元 D.2100元8.某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是()A.0.8 B.0.75 C.0.6 D.0.459.随机抛掷一枚骰子,则所得骰子点数的期望为()A.0.6 B.1 C.3.5 D.210.设非零向量满足,,则向量间的夹角为()A.150° B.60°C.120° D.30°11.若,则等于()A.2 B.0 C.-2 D.-412.函数向右平移个单位后得到函数,若在上单调递增,则的取值范围是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.如果,且为第四象限角,那么的值是____.14.如图是一算法的伪代码,则输出值为____________.15.若曲线上在点处的切线与直线垂直,则点的坐标为______.16.△的内角的对边分别为,已知,,则△的面积为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数有两个不同的零点,.(1)求的取值范围;(2)求证:.18.(12分)某小组10名学生参加的一次数学竞赛的成绩分别为:92、77、75、90、63、84、99、60、79、85,求总体平均数μ、中位数m、方差σ2和标准差σ;(列式并计算,结果精确到0.1)19.(12分)选修4-5:不等式选讲已知函数(Ⅰ)解不等式;(Ⅱ)对及,不等式恒成立,求实数的取值范围.20.(12分)设函数的导函数为.若不等式对任意实数x恒成立,则称函数是“超导函数”.(1)请举一个“超导函数”的例子,并加以证明;(2)若函数与都是“超导函数”,且其中一个在R上单调递增,另一个在R上单调递减,求证:函数是“超导函数”;(3)若函数是“超导函数”且方程无实根,(e为自然对数的底数),判断方程的实数根的个数并说明理由.21.(12分)已知的展开式的各项系数之和等于的展开式中的常数项.求:(1)展开式的二项式系数和;(2)展开式中项的二项式系数.22.(10分)已知函数是奇函数().(1)求实数的值;(2)试判断函数在上的单调性,并证明你的结论;(3)若对任意的,不等式恒成立,求实数的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】

分析:本题根据运动变化的规律即可选出答案.依据该同学出门后一系列的动作,匀速前往对应的图象是上升的直线,匀速返回对应的图象是下降的直线,等等,从而选出答案.解答:解:根据他先前进了akm,得图象是一段上升的直线,由觉得有点累,就休息了一段时间,得图象是一段平行于t轴的直线,由想想路途遥远,有些泄气,就沿原路返回骑了bkm(b<a),得图象是一段下降的直线,由记起诗句“不到长城非好汉”,便调转车头继续前进,得图象是一段上升的直线,综合,得图象是C,故选C.点评:本小题主要考查函数的图象、运动变化的规律等基础知识,考查数形结合思想.属于基础题.2、D【解析】

求出,根据条件概率公式即可得解.【详解】由题:,.故选:D【点睛】此题考查求条件概率,关键在于准确求出AB的概率和B的概率,根据条件概率公式计算求解.3、B【解析】分析:通过f(x)的单调性,画出f(x)的图象和直线y=a,考虑四个交点的情况,得到x1=-2-x2,-1<x2≤0,x3x4=4,再由二次函数的单调性,可得所求范围.详解:当x>0时,f(x)=,可得f(x)在x>2递增,在0<x<2处递减,

由f(x)=e

(x+1)2,x≤0,

x<-1时,f(x)递减;-1<x<0时,f(x)递增,

可得x=-1处取得极小值1,

作出f(x)的图象,以及直线y=a,

可得e

(x1+1)2=e

(x2+1)2=,即有x1+1+x2+1=0,可得x1=-2-x2,-1<x2≤0,可得x3x4=4,

x1x2+x3x4=4-2x2-x22=-(x2+1)2+5,在-1<x2≤0递减,

可得所求范围为[4,5).故选B.点睛:本题考查函数方程的转化思想,以及数形结合思想方法,考查二次函数的最值求法,化简整理的运算能力,属于中档题.4、D【解析】

正态曲线关于x=μ对称,且μ越大图象越靠近右边,第一个曲线的均值比第二和第三和图象的均值小,且二,三两个的均值相等,又有σ越小图象越瘦长,得到正确的结果.【详解】根据课本中对正太分布密度函数的介绍知道:当正态分布密度函数为,则对应的函数的图像的对称轴为:,∵正态曲线关于x=μ对称,且μ越大图象越靠近右边,∴第一个曲线的均值比第二和第三和图象的均值小,且二,三两个的均值相等,只能从A,D两个答案中选一个,∵σ越小图象越瘦长,得到第二个图象的σ比第三个的σ要小,第一个和第二个的σ相等故选D.【点睛】本题考查正态分布曲线的特点及曲线所表示的意义,考查密度函数中两个特征数均值和标准差对曲线的位置和形状的影响,是一个基础题.5、A【解析】

由二项分布的公式即可求得时概率值.【详解】由二项分布公式:.故选A.【点睛】本题考查二项分布的公式,由题意代入公式即可求出.6、C【解析】

根据已知求的例子,令,即,解方程即可得到的值.【详解】令,即,即,解得(舍),故故选:C【点睛】本题考查归纳推理,算术和方程,读懂题中整体代换的方法、理解其解答过程是关键,属于基础题.7、D【解析】第步从到中选个连续号有种选法;第步从到中选个连续号有种选法;第步从到中选个号有种选法.由分步计数原理可知:满足要求的注数共有注,故至少要花,故选D.8、A【解析】

试题分析:记“一天的空气质量为优良”,“第二天空气质量也为优良”,由题意可知,所以,故选A.考点:条件概率.9、C【解析】

写出分布列,然后利用期望公式求解即可.【详解】抛掷骰子所得点数的分布列为123456所以.故选:.【点睛】本题考查离散型随机变量的分布列以及期望的求法,意在考查学生对这些知识的理解掌握水平,属于基础题.10、C【解析】

利用平方运算得到夹角和模长的关系,从而求得夹角的余弦值,进而得到夹角.【详解】即本题正确选项:【点睛】本题考查向量夹角的求解,关键是利用平方运算和数量积运算将问题变为模长之间的关系,求得夹角的余弦值,从而得到所求角.11、D【解析】

先求导,算出,然后即可求出【详解】因为,所以所以,得所以,所以故选:D【点睛】本题考查的是导数的计算,较简单.12、D【解析】

首先求函数,再求函数的单调递增区间,区间是函数单调递增区间的子集,建立不等关系求的取值范围.【详解】,令解得,若在上单调递增,,解得:时,.故选D.【点睛】本题考查了三角函数的性质和平移变换,属于中档题型.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

利用先求得,再利用求解即可,注意利用角的范围确定三角函数值的符号.【详解】由题,因为,且,则或,因为为第四象限角,所以,则,所以,故答案为:【点睛】本题考查利用同角的三角函数关系求三角函数值,属于基础题.14、4【解析】分析:按照循环体执行,直到跳出循环详解:第一次循环后:S=7,n=6;第二次循环后:S=13,n=5;第三次循环后:S=18,n=4;不成立,结束循环所以输出值为4点睛:程序题目在分析的时候一定要注意结束条件,逐次执行程序即可.15、【解析】

设切点,求得的导数,可得切线的斜率,由两直线垂直的条件可得,即为点的坐标.【详解】设切点,的导数为,可得切线的斜率为,由切线与直线垂直,可得,解得,即.故答案为:【点睛】本题考查了导数的几何意义以及直线垂直斜率之间的关系,属于基础题.16、.【解析】

首先利用正弦定理将题中的式子化为,化简求得,利用余弦定理,结合题中的条件,可以得到,可以断定为锐角,从而求得,进一步求得,利用三角形面积公式求得结果.【详解】因为,结合正弦定理可得,可得,因为,结合余弦定理,可得,所以为锐角,且,从而求得,所以的面积为,故答案是.【点睛】本题主要考查余弦定理及正弦定理的应用,属于中档题.对余弦定理一定要熟记两种形式:(1);(2),同时还要熟练掌握运用两种形式的条件.另外,在解与三角形、三角函数有关的问题时,还需要记住、、等特殊角的三角函数值,以便在解题中直接应用.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)见解析【解析】分析:(1)求出函数的导数,通过讨论的范围求出函数的单调区间,从而求出的范围即可;(2)构造函数,则可证当时,在上,有,即.将代入上面不等式中即可证明.详解:(1),若,则,在上单调递增,至多有一个零点,舍去;则必有,得在上递减,在上递增,要使有两个不同的零点,则须有.(严格来讲,还需补充两处变化趋势的说明:当时,;当时,).(2)构造函数,则.当时,,但因式的符号不容易看出,引出辅助函数,则,得在上,当时,,即,则,即,,得在上,有,即.将代入上面不等式中得,又,,在上,故,.点睛:本题考查了导数的综合应用及恒成立问题,同时考查了数形结合的思想应用,属于难题.18、,,,【解析】

根据平均数、方差、标准差的计算公式求得结果,根据中位数的定义可排列顺序后求得.【详解】平均数名学生按成绩自低到高排列为:则中位数方差标准差【点睛】本题考查已知数据求解平均数、中位数、方差和标准差的问题,考查运算求解能力,属于基础题.19、(Ⅰ).(Ⅱ).【解析】

详解:(Ⅰ)当时,由,解得;当时,不成立;当时,由,解得.所以不等式的解集为.(Ⅱ)因为,所以.由题意知对,,即,因为,所以,解得.【点睛】⑴绝对值不等式解法的基本思路是:去掉绝对值号,把它转化为一般的不等式求解,转化的方法一般有:①绝对值定义法;②平方法;③零点区域法.⑵不等式的恒成立可用分离变量法.若所给的不等式能通过恒等变形使参数与主元分离于不等式两端,从而问题转化为求主元函数的最值,进而求出参数范围.这种方法本质也是求最值.一般有:①为参数)恒成立②为参数)恒成立.20、(1)见解析.(2)见解析.(3)见解析.【解析】分析:(1)根据定义举任何常数都可以;(2)∵,∴,即证-在R上成立即可;(3)构造函数,因为是“超导函数”,∴对任意实数恒成立,而方程无实根,故恒成立,所以在上单调递减,故方程等价于,即,设,分析函数单调性结合零点定理即可得出结论.详解:(1)举例:函数是“超导函数”,因为,,满足对任意实数恒成立,故是“超导函数”.注:答案不唯一,必须有证明过程才能给分,无证明过程的不给分.(2)∵,∴,∴因为函数与都是“超导函数”,所以不等式与对任意实数都恒成立,故,,①而与一个在上单调递增,另一个在上单调递减,故,②由①②得对任意实数都恒成立,所以函数是“超导函数”.(3)∵,所以方程可化为,设函数,,则原方程即为,③因为是“超导函数”,∴对任意实数恒成立,而方程无实根,故恒成立,所以在上单调递减,故方程③等价于,即,设,,则在上恒成立,故在上单调递增,而,,且函数的图象在上连续不断,故在上有且仅有一个零点,从而原方程有且仅有唯一实数根.点睛:考查函数的新定义,首先要读懂新定义,将新定义的知识与所学导函数的知识相联系是解题关键,本题的难点在于能否将新定义的语言转化为自己所熟悉的函数语言进行等价研究问题是解题关键,属于压轴题.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论