




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.已知a,b,c是△ABC的三边长,且满足关系,则△ABC的形状为()A.直角三角形 B.等腰三角形 C.等腰直角三角形 D.等边三角形2.已知,则的值为()A.2x5 B.—2 C.52x D.23.甲、乙、丙、丁四名射击运动员在选拔赛中,每人射击了10次、甲、乙两人的成绩如表所示,丙、丁两人的成绩如图所示.欲选一名运动员参赛,从平均数和方差两个因素分析,应选().
甲
乙
平均数
9
8
方差
1
1
A.甲 B.乙 C.丙 D.丁4.如图,E是平行四边形内任一点,若S平行四边形ABCD=8,则图中阴影部分的面积是()A.3 B.4 C.5 D.65.下列各式中,一定是二次根式的是A. B. C. D.6.李雷同学周末晨练,他从家里出发,跑步到公园,然后在公园玩一会儿篮球,再走路回家,那么,他与自己家的距离y(米)与时间x(分钟)之间的关系的大致图象是()A. B. C. D.7.已知关于x的不等式组的整数解共有2个,则整数a的取值是()A.﹣2 B.﹣1 C.0 D.18.点P的坐标为(﹣3,2),把点P向右平移2个单位后再向下平移5个单位得到点P1,则点P1的坐标为()A.(﹣1,2) B.(﹣5,﹣3) C.(﹣1,﹣3) D.(﹣1,7)9.解分式方程时,在方程的两边同时乘以(x﹣1)(x+1),把原方程化为x+1+2x(x﹣1)=2(x﹣1)(x+1),这一变形过程体现的数学思想主要是()A.类比思想 B.转化思想 C.方程思想 D.函数思想10.如图,中,是边的中点,平分于已知则的长为()A. B.C. D.11.如图,直线y=kx+b(k≠0)经过点A(﹣2,4),则不等式kx+b>4的解集为()A.x>﹣2 B.x<﹣2 C.x>4 D.x<412.如图,已知某广场菱形花坛的周长是24米,,则此花坛的面积等于()A.平方米 B.24平方米 C.平方米 D.平方米二、填空题(每题4分,共24分)13.如图,在平行四边形中,于点,若,则的度数为________.14.如果一个多边形的内角和等于它的外角和的2倍,那么这个多边形是_____边形.15.已知一组数据1,a,3,6,7,它的平均数是4,这组数据的方差是_____.16.花粉的质量很小.一粒某种植物花粉的质量约为0.000037毫克,那么0.000037毫克可用科学记数法表示为________毫克.17.将函数的图象向下平移2个单位,所得函数图象的解析式为__________.18.如图,当时,有最大值;当时,随的增大而______.(填“增大”或“减小”)三、解答题(共78分)19.(8分)在△ABC中,∠C=90°,AC=6,BC=8,D、E分别是斜边AB和直角边CB上的点,把△ABC沿着直线DE折叠,顶点B的对应点是B′.(1)如图(1),如果点B′和顶点A重合,求CE的长;(2)如图(2),如果点B′和落在AC的中点上,求CE的长.20.(8分)某学校为了美化绿化校园,计划购买甲,乙两种花木共100棵绿化操场,其中甲种花木每棵60元,乙种花木每棵80元.(1)若购买甲,乙两种花木刚好用去7200元,则购买了甲,乙两种花木各多少棵?(2)如果购买乙种花木的数量不少于甲种花木的数量,请设计一种购买方案使所需费用最低,并求出该购买方案所需总费用.21.(8分)(1)解不等式:(2)解方程:22.(10分)某校为了解本校九年级学生足球训练情况,随机抽查该年级若干名学生进行测试,然后把测试结果分为4个等级:A、B、C、D,并将统计结果绘制成两幅不完整的统计图.请根据图中的信息解答下列问题(1)补全条形统计图(2)该年级共有700人,估计该年级足球测试成绩为D等的人数为__________人;(3)在此次测试中,有甲、乙、丙、丁四个班的学生表现突出,现决定从这四个班中随机选取两个班在全校举行一场足球友谊赛.请用画树状图或列表的方法,求恰好选到甲、乙两个班的概率.23.(10分)新能源汽车投放市场后,有效改善了城市空气质量。经过市场调查得知,某市去年新能源汽车总量已达到3250辆,预计明年会增长到6370辆.(1)求今、明两年新能源汽车数量的平均增长率;(2)为鼓励市民购买新能源汽车,该市财政部门决定对今年增加的新能源汽车给予每辆0.8万元的政府性补贴.在(1)的条件下,求该市财政部门今年需要准备多少补贴资金?24.(10分)如图,、分别为的边、的中点,,延长至点,使得,连接、、.若时,求四边形的周长.25.(12分)如图,一次函数y=x+6的图象与x轴、y轴分别交于A、B两点,点C与点A关于y轴对称.动点P、Q分别在线段AC、AB上(点P与点A、C不重合),且满足∠BPQ=∠BAO.(1)求点A、B的坐标及线段BC的长度;(2)当点P在什么位置时,△APQ≌△CBP,说明理由;(3)当△PQB为等腰三角形时,求点P的坐标.26.现代互联网技术的广泛应用,催生了快递行业的高速发展.据调查,某家快递公司每月的投递总件数的增长率相同,今年三月份与五月份完成投递的快递总件数分别为30万件和36.3万件,求该快递公司投递快递总件数的月平均增长率.
参考答案一、选择题(每题4分,共48分)1、C【解析】试题解析:∵+|a−b|=0,∴c2-a2-b2=0,a-b=0,解得:a2+b2=c2,a=b,∴△ABC的形状为等腰直角三角形;故选C.【点睛】此题主要考查了勾股定理逆定理以及非负数的性质,关键是掌握勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.2、C【解析】
结合1x2,根据绝对值和二次根式的进行计算,即可得到答案.【详解】因为1x2,所以==52x.故选择C.【点睛】本题考查不等式、绝对值和二次根式,解题的关键是掌握不等式、绝对值和二次根式.3、C【解析】
试题分析:丙的平均数==9,丙的方差=[1+1+1=1]=0.4,乙的平均数==8.2,由题意可知,丙的成绩最好,故选C.考点:1、方差;2、折线统计图;3、加权平均数4、B【解析】
解:设两个阴影部分三角形的底为AD,CB,高分别为h1,h2,则h1+h2为平行四边形的高,∴=4故选:B【点睛】本题主要考查了三角形的面积公式和平行四边形的性质(平行四边形的两组对边分别相等).要求能灵活的运用等量代换找到需要的关系.5、C【解析】
根据二次根式的定义进行判断.【详解】解:A.无意义,不是二次根式;
B.当时,是二次根式,此选项不符合题意;
C.是二次根式,符合题意;
D.不是二次根式,不符合题意;
故选C.【点睛】本题考查了二次根式的定义,关键是掌握把形如的式子叫做二次根式.6、B【解析】
他跑步到离家较远的公园,打了一会儿篮球后慢步回家,去的时候速度快,用的时间少,然后在公园打篮球路程是不变的,回家慢步用的时间多.据此解答.【详解】根据以上分析可知能大致反映当天李雷同学离家的距离y与时间x的关系的是B.故选:B.【点睛】本题考查了函数的图象,理解每阶段中,离家的距离与时间的关系是解答本题的关键.7、C【解析】分析:先用a表示出不等式组的整数解,再根据不等式组的整数解有2个可得出a的取值范围.解:,由①得,x≥a,由②得,x≤1,故不等式组的解集为:a≤x≤1,∵不等式的整数解有2个,∴其整数解为:1,1,∵a为整数,∴a=1.故选C.8、C【解析】
点P的坐标为(﹣3,2),把点P向右平移2个单位得点(-3+2,2),再向下平移5个单位得到点(-3+2,2-5).【详解】解:点P的坐标为(﹣3,2),把点P向右平移2个单位得(-3+2,2),再向下平移5个单位得到点P1(-3+2,2-5),即(-1,-3).故选C【点睛】本题考核知识点:平移和点的坐标.解题关键点:理解平移和点的坐标关系.9、B【解析】
分式方程去分母转化为整式方程,故利用的数学思想是转化思想.【详解】解分式方程时,在方程的两边同时乘以(x﹣1)(x+1),把原方程化为x+1+2x(x﹣1)=2(x﹣1)(x+1),这一变形过程体现的数学思想主要是转化思想.故选B.【点睛】此题考查了解分式方程,熟练掌握运算法则是解本题的关键.10、A【解析】
延长BE交AC于F,由三线合一定理,得到△ABF是等腰三角形,则AF=AB=10,BE=EF,根据三角形中位线定理计算即可.【详解】解:延长交于点.,平分,为等腰三角形.,E为的中点又为的中点为的中位线,故选:A.【点睛】本题考查的是三角形中位线定理、三线合一定理,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.11、A【解析】【分析】求不等式kx+b>4的解集就是求函数值大于4时,自变量的取值范围,观察图象即可得.【详解】由图象可以看出,直线y=4上方函数图象所对应自变量的取值为x>-2,∴不等式kx+b>4的解集是x>-2,故选A.【点睛】本题考查了一次函数与一元一次不等式;观察函数图象,比较函数图象的高低(即比较函数值的大小),确定对应的自变量的取值范围.也考查了数形结合的思想.12、C【解析】
作菱形的高DE,先由菱形的周长求出边长为6m,再由60°的正弦求出高DE的长,利用面积公式求菱形的面积.【详解】作高DE,垂足为E,则∠AED=90°,∵菱形花坛ABCD的周长是14m,∴AB=AD=6m,∵∠BAD=60°,sin∠BAD=,∴DE=3m,∴菱形花坛ABCD的面积=AB•DE=6×3=18m1.故选C.【点睛】本题考查了菱形的面积的求法,一般作法有两种:①菱形的面积=底边×高;②菱形的面积=两条对角线乘积的一半.二、填空题(每题4分,共24分)13、26°【解析】
根据可得△DBC为等腰三角形,则有∠DBC=∠C=64°,再根据平行四边形的对边互相平行,可得∠ADB=∠DBC=64°,最后再根据内角和定理来求得∠DAE的度数.【详解】解:∵,∠C=64°,∴∠DBC=∠C=64°,又∵四边形是平行四边形,∴AD∥BC,∴∠ADB=∠DBC=64°,又∵,∴∠DAE=90°−64°=26°.故答案为:26°.【点睛】本题主要考查了平行四边形和等腰三角形的性质,熟练掌握是解题的关键.14、六【解析】
n边形的内角和可以表示成(n﹣2)•180°,外角和为360°,根据题意列方程求解.【详解】设多边形的边数为n,依题意,得:(n﹣2)•180°=2×360°,解得n=6,故答案为:六.【点睛】本题考查了多边形的内角和计算公式,多边形的外角和.关键是根据题意利用多边形的外角和及内角和之间的关系列出方程求边数.15、【解析】
根据平均数确定出a后,再根据方差的公式S2=[(x1-)2+(x2-)2+…+(xn-)2]计算方差.【详解】解:由平均数的公式得:(1+a+3+6+7)÷5=4,解得a=3;∴方差=[(1-4)2+(3-4)2+(3-4)2+(6-4)2+(7-4)2]÷5=.故答案为.【点睛】此题考查了平均数和方差的定义.平均数是所有数据的和除以所有数据的个数.方差的公式S2=[(x1-)2+(x2-)2+…+(xn-)2].16、【解析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.000037毫克可用科学记数法表示为3.7×10-5毫克.故答案为:.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.17、y=3x-1.【解析】
根据“上加下减”的原则求解即可.【详解】将正比例函数y=3x的图象向下平移1个单位长度,所得的函数解析式为y=3x-1.故答案为:y=3x-1.【点睛】本题考查的是一次函数的图象与几何变换,熟知函数图象变换的法则是解答此题的关键.18、增大【解析】
根据函数图像可知,当时,随的增大而增大,即可得到答案.【详解】解:根据题意,∵当时,有最大值;∴函数图像开口向下,∴当时,随的增大而增大;故答案为:增大.【点睛】本题考查了二次函数的图像和性质,解题的关键是熟练掌握二次函数的图像和性质进行解题.三、解答题(共78分)19、(1)74;(2)【解析】
(1)如图(1),设CE=x,则BE=8﹣x;根据勾股定理列出关于x的方程,解方程即可解决问题.(2)如图(2),首先求出CB′=3;类比(1)中的解法,设出未知数,列出方程即可解决问题.【详解】(1)如图(1),设CE=x,则BE=8﹣x;由题意得:AE=BE=8﹣x,由勾股定理得:x2+62=(8﹣x)2,解得:x=74即CE的长为:74(2)如图(2),∵点B′落在AC的中点,∴CB′=12AC=3设CE=x,类比(1)中的解法,可列出方程:x2+32=(8﹣x)2解得:x=5516即CE的长为:5516【点睛】该题主要考查了翻折变换的性质及其应用问题;解题的关键是灵活运用翻折变换的性质,找出图形中隐含的等量关系;借助勾股定理等几何知识点来分析、判断、推理或解答.20、(1)购买甲种花木40棵,乙种花木60棵;(2)当购买甲种花木50棵,乙种花木50棵是所需费用最低,费用为7000元.【解析】
(1)设购买甲种花木x棵,乙种花木y棵,根据题意可以列出相应的二元一次方程组,解方程组求出x、y的值即可得答案;(2)设购买甲种花木a棵,则购买乙种花木(100﹣a)棵,所需费用为w元,根据题意可以得到费用与甲种花木数量的函数关系式,然后根据购买乙种花木的数量不少于甲种花木的数量,可以得到购买甲种花木的数量的取值范围,再根据一次函数的性质即可解答本题.【详解】(1)设购买甲种花木x棵,乙种花木y棵,∵购买甲,乙两种花木共100棵,刚好用去7200元,∴,解得:,答:购买甲种花木40棵,乙种花木60棵;(2)设购买甲种花木a棵,则购买乙种花木(100﹣a)棵,所需费用为w元,w=60a+80(100﹣a)=﹣20a+8000,∵购买乙种花木的数量不少于甲种花木的数量,∴a≤100﹣a,解得,a≤50,∵-20<0,∴w随a的增大而减小,∴当a=50时,w取得最小值,此时w=﹣20×50+8000=7000,100﹣a=50,答:当购买甲种花木50棵,乙种花木50棵是所需费用最低,费用为7000元.【点睛】本题考查二元一次方程组的应用、一元一次不等式的应用及一次函数的性质,根据题意,正确得出等量关系和不等关系并熟练掌握一次函数的性质是解题关键.21、(1);(2)【解析】
(1)按照去分母、移项、合并同类项的步骤求解即可;(2)按照去分母、系数化1的步骤求解即可.【详解】(1)去分母得移项、合并得解得所以不等式的解集为(2)去分母得解得经检验,是分式方程的解.【点睛】此题主要考查不等式以及分式方程的求解,熟练掌握,即可解题.22、(1)图形见解析(2)56(3)【解析】试题分析:(1)根据A等学生人数除以它所占的百分比求得总人数,然后乘以B等所占的百分比求得B等人数,从而补全条形图;(2)用该年级学生总数乘以足球测试成绩为D等的人数所占百分比即可求解;(3)利用树状图法,将所有等可能的结果列举出来,利用概率公式求解即可.试题解析:(1)总人数为14÷28%=50人,B等人数为50×40%=20人.条形图补充如下:(2)该年级足球测试成绩为D等的人数为700×=56(人).故答案为56;(3)画树状图:共有12种等可能的结果数,其中选取的两个班恰好是甲、乙两个班的情况占2种,所以恰好选到甲、乙两个班的概率是=.考点:1、列表法与树状图法;2、用样本估计总体;3、扇形统计图;4、条形统计图23、(1)40%;(2)财政部门今年需要准备1040万元补贴资金.【解析】
(1)设今、明两年新能源汽车数量的平均增长率为x,根据“去年新能源汽车总量已达到3250辆,预计明年会增长到6370辆”列出方程并解答;
(2)根据(1)中的增长率可以得到:3250×增长率×0.1.【详解】解:(1)设今、明两年新能源汽车数量的平均增长率为,由题意得.解得,,(舍)因此,.所以,今、明两年新能源汽车数量的平均增长率为40%.(2)3250×40%×0.1=1040(万元).所以,财政部门今年需要准备1040万元补贴资金.【
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中国醋酸饮料行业发展趋势与投资战略研究报告2025-2028版
- 和声变奏技巧与创作自由度试题及答案
- 农产品电商数字化转型试题及答案
- 中国补血保健品行业发展趋势与投资战略研究报告2025-2028版
- 中国葱油月饼行业市场发展前景及发展趋势与投资战略研究报告2025-2028版
- 2025年注册土木工程师考试考后分析试题及答案
- 中国管子大喷头行业市场发展前景及发展趋势与投资战略研究报告2025-2028版
- 乐理知识考试题及答案
- 2025年小学教师教育教学反思与改进试题及答案
- 中国畜牧养殖业行业市场发展现状及前景趋势与投资分析研究报告2025-2028版
- 2025春粤教粤科版(2024)小学科学一年级下册(全册)教案、教学反思、教学计划(附教材目录P103)
- 福建事业单位考试求职信撰写技巧试题及答案
- 2025-2030中国金融云行业市场发展分析及发展趋势与投资前景研究报告
- 2025年陕西高中学业水平合格考数学试卷及答案
- 2025年天津市红桥区中考第一次模拟考试物理试卷(含答案)
- 2025河北省国内旅游组团合同示范文本
- 企业品牌部管理制度
- 2025至2030年中国生物质能利用产业深度分析及发展规划咨询建议报告
- 水利水电工程基建资料
- 2024年美容师考试相关法律法规知识试题及答案
- 煤炭行业“技能大师”工作室入围复评-答辩
评论
0/150
提交评论