中南大学大学物理_第1页
中南大学大学物理_第2页
中南大学大学物理_第3页
中南大学大学物理_第4页
中南大学大学物理_第5页
已阅读5页,还剩23页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

《大学物理》练习题No.13感生电动势

班级学号姓名成绩

说明:字母为黑体者表示矢量

一、选择题

1.如图13.1所示,均匀磁场被局限在无限长圆柱形空间内,且成轴对称分布,图为此磁场的

截面,磁场按dB/dt随时间变化,圆柱体外一点P的感应电场当应[B]

(A)等于零.

(B)不为零,方向向上或向下.

(C)不为零,方向向左或向右.

(D)不为零,方向向内或向外.

(E)无法判定.

2.一无限长直螺线管内放置两段与其轴垂直的直线导体,如图13.2

所示为此两段导体所处的螺线管截面,其中ab段在直径上,cd段在

一条弦上,当螺线管通电的瞬间(电流方向如图)则ab、cd两段导体

中感生电动势的有无及导体两端电位高低情况为:[D]?

(A)ab中有感生电动势,cd中无感生电动势,a端电位高.

(B)ab中有感生电动势,cd中无感生电动势,b端电位高.

(C)ab中无感生电动势,cd中有感生电动势,d端电位高.

(D)ab中无感生电动势,cd中有感生电动势,c端电位高.

3.圆电流外有一闭合回路,它们在同一平面内,ab是回路上的两点,

如图13.3所示,当圆电流I变化时,闭合回路上的感应电动势及a、

b两点的电位差分别为:[A]

(A)闭合回路上有感应电动势,但不能引入电势差的概念.

(B)闭合回路匕有感应电动势,Ua-Ub>0.

(C)闭合回路上有感应电动势,ua-ub<o.

(D)闭合回路上无感应电动势,无电位差.

4.匝数为N的矩形线圈长为a宽为b,置于均匀磁场B中.线圈以

角速度3旋转,如图13.4所示,当t=0时线圈平面处于纸面,且AC边

向外,DE边向里.设回路正向ACDEA.则任一时刻线圈内感应电

I

动势为[B]4-^---------\E

(A)-abNBcosincoti

(B)abNBcocoscot

(C)abNBcosincot图13.4

(D)-abNBcocoscot

二.填空题

1.单位长度匝数n=5000/m,截面S=2xl0-3m2的螺绕环(可看作细螺绕环)套在一匝数为N=5,

电阻R=2.0O的线圈A内(如图13.5),如使螺绕环内的电流I按每秒减少20A的速率变化,

则线圈A内产生的感应电动势为—1.26x10-3%伏,感应电流为5.3义1。7/安,两

秒内通过线圈A某一截面的感应电量为1.26x10-3。库仑.

2.在圆柱形空间内,侬貂丝形

图13.5

图13-6

三.计算题

1.均匀磁场被限制在无限长圆柱形空间,如图13-7,磁场方向为沿轴线并垂直图面向里,

磁场大小既随到轴线的距离r成正比而变化,又随时间t作正弦变化,即3=8orsin。/,

Bo、啰均为常数。若在磁场内放泮径为a的金属圆环,环心在圆柱状磁场轴线上,求金

属环中的感生电动势

解:金属环中的感生电动势

d(/)

JBna)rcos(Dtl7n-dr

dt

图13-7

Bna)cosaX

所以,£=-------e---------

3

2.在半径为R的圆柱形空间中存在着均匀磁场B,B的方向与轴线平行,有一长为1。的金属

棒AB,置于该磁场中,如图13-8所示,当dB/dt以恒定值增长时,求金属棒上的感应电动

势,并指出A、B点电位的高低.--■、

/、

/XXX\

z-JD/I)\

解:根据磁场B柱对称,当——。0时,可知均为一系列同心圆,即Ixx?xx'

dr।

E,与半径正交,故沿半径方向不会产生感生电动势,即、、---

£°A=£°B=。,图13-8

这样在回路OAB中的电动势为

SoAB=SoA+SAB+SOB=SAB

为AB部分内的电动势。

山上面分析可知

_dB

/。河+/;

S1为三角形CMB的面积,据题设,S1=

4

2

cdBl0y)4R+lo(iB

£AR=31---=----------------

AB1dz4At

d/?

因为正>。,由楞次定律可判定B端电位高。

《大学物理》练习题No.14自感互感

班级学号姓名成绩

一、选择题

1.在一中空圆柱面上绕有两个完全相同的线圈aa,和bbl当线圈aa,和bb,如图⑴绕制及

联结时,ab间自感系数为L"如图(2)彼此重叠绕制及联结时,ab间自感系数为L2,贝U:

A](A)LI=L2=0。(B)L]=L2W0o

(C)Li=0,匕=0。(D)L[W0,L2=0O

「声1可冲2甲

*b

图⑴图⑵

2.面积为S和2s的两圆线圈1、2如图放置,通有相同的电流1。线圈1的电流所产生的通

过线圈2的磁通量用⑦2i表示,线圈2的电流所产生的通过线圈1的磁通量用。12表示,则

021和,2的大小关系为:

[C](A)%=2%。

(C)①21=。12。(D)021>外。

3.两个通有电流的平面圆线圈相距不远,如果要使其互感系数近似为零,则应调整线圈的取

向使

[C](A)两线圈平面都平行于两圆心的连线.

(B)两线圈平面都垂直于两圆心的连线.

(C)一个线圈平面平行于两圆心的连线,另一个线圈平面垂直于两圆心的连线.

(D)两线圈中电流方向相反.

4.对于线圈其自感系数的定义式为L=R1JL当线圈的几何形状,大小及周围磁介质分布不变,

且无铁磁性物质时,若线圈中的电流变小,则线圈的自感系数L

[C](A)变大,与电流成反比关系.(B)变小.

(C)不变.(D)变大,但与电流不成反比关系.

二、填空题

1.细长螺线管的截面积为2cm2,线圈总匝数N=200,当通有4A电流时,测得螺线管内的磁

感应强度B=2T,忽略漏磁和两端的不均匀性,则该螺线管的自感系数为:_20mH—.

2.一圆形线圈G有N,匝,线圈半径为r.将此线圈放在另一半径为R(R»r),匝数为N2的圆形

大线圈C2的中心,两者同轴共面.则此二线圈的互感系数M为:“也"、.

2成

三、计算题

1.两半径为a的长直导线平行放置,相距为d,组成同•回路,求其单位长度导线的自感系数

Lo-

解:设二导线通有等值反向的电流I,在二导线间坐标x处取一面元d5=/dr,则长为L的

二导线间构成一回路,略去导线内磁通,故穿过该回路的磁通量应为

①二=2「"组/dr

JL2m

=Aj/lnJ-£

7ia

由此可得,长为1的这一对导线的自感系数为

I71a

单位长度导线的自感系数%=4=—

I7Ta

2.如图所示,长直导线和矩形线圈共面,AB边与导线平行,a=lcm,b=8cm,l=30cm

(1)若长直导线中的电流I在1s内均匀地从10A降为零,则线圈ABCD中的感应电动势的大

小和方向如何?

(2)长直导线和线圈的互感系数M=?(ln2=0.693)

解:(1)通过矩形线圈的磁通链,

甲=0=J与•加=jdx

得到,@=幽\n3

2万

所以,线圈ABCD中的感应电动势的大小

£=4々=1.25x10-6%,方向为逆时针。

dt

(2)长直导线和线圈的互感系数

M=.=也ln2=L25xlO-7

I2万

《大学物理》练习题No.15磁场的能量麦克斯韦方程组

班级学号姓名成绩

说明:字母为黑体者表示矢量

一、选择题

1.对位移电流,有下述四种说法,请指出哪一种说法是正确的。

[A](A)位移电流是由变化电场产生的;

(B)位移电流是由变化磁场产生的;

(C)位移电流的热效应服从焦耳一楞次定律;

(D)位移电流的磁效应不服从安培环路定理。

2.设位移电流与传导电流激发的磁场分别为氏和Bo,则有

[A](A)^Bo-d5=O,^Bd-dS=0.

(B)<^Bo.dS*O,<^Bd-d5*O.

(C)<^Bo-d5=O,<^BddS^0.

(D)g/dSHO,

3.在某空间,有静止电荷激发的电场E。,又有变化磁场激发的电场Ei,选一闭合回路1,则有

[A](A)一定有。/皿=0,4瓦d/*0.

(B)一定有韭0-八0,捎4=0・

(C)可能有•d/H0,一定有d片0.

(D).定有gEo-d/=0,可能有g%<i/=0.

4.用线圈的自感系数L来表示载流线圈磁场能量的公式Wm=LI2/2

[D](A)只适用于无限长密绕螺线管.

(B)只适用于单匝圆线圈.

(C)只适用于一个匝数很多,且密绕的螺线环.

(D)适用于自感系数L一定的任意线圈.

II

二•填空题po

1.真空中两条相距2a的平行长直导线,通以方向相同,大小相等的电流-「一7一「一「

I,0、P两点与两导线在同一平面内,与导线的距离如图所示,则O‘a」9,

点的磁场能量密度Wz=0,P点的磁场能量密度:

K22,

36〃o%a

2.反映电磁场基本性质和规律的麦克斯韦方程组积分形式为:

4方=........①<{^d/...........②

/=1,dt

《月・dM=O..........③c[^-d7=^z,.+*.........④

试判断下列结论是包含或等效于哪一个麦克斯韦方程式的,将你确定的方程是用代号填在相

对应结论的空白处.

(1)变化的磁场一定伴随有传导电流:②;

(2)磁感应线是无头无尾的:③:

(3)电荷总伴随有电场:①o

3.在没有自由电荷与传导电流的变化电磁场中

M4=---------------------------吟•加-----------------------------------------------;

jEdl=■■噂,就

《大学物理》练习题No.16光的干涉性分波面干涉

班级学号姓名成绩

一、选择题

1.真空中波长为大的单色光,在折射率为n的均匀透明媒质中,从A点沿某一路径传播到B

点,路径的长度为LA、B两点光振动位相差记为△9,贝盯C]

(A)当1=3九/2,有△中=3兀.

(B)当1=3入/(2n),有△<p=3n7i.

(C)当1=3九/(211),有/\中=3兀.

(D)当1=3n入/2,有=3n兀

2.在双缝干涉中,两缝间距离为d,双缝与屏幕之间的距离为D(D»d),波长为人的平行单色

光垂直照射到双缝上,屏幕上干涉条纹中相邻暗纹之间的距离是[D]

(A)2九D/d.(B)Xd/D.(C)dD/X.(D)九D/d.

3.在双缝干涉实验中,为使屏上的干涉条纹间距变大,可以采取的办法是[C]

(A)使屏靠近双缝.

(B)把两个缝的宽度稍微调窄.

(C)使两缝的间距变小.

(D)改用波长较小的单色光源

4.在双缝实验中,设缝是水平的,若双缝所在的平板稍微向上平移,其它条件不变,则屏上的

干涉条纹[B]

(A)向下平移,且间距不变.

(B)向上平移,且间距不变.

(C)不移动,但间距改变.

(D)向上平移,且间距改变.

5.如图所示,用波长为;I的单色光照射双缝干涉实验装置,若将一折射率为n、劈角为a的

透明劈尖b插入光线2中,则当劈尖b缓慢向上移动时(只遮住S2),屏C上.的干涉条纹[C]

(A)间隔变大,向下移动。

(B)间隔变小,向上移动。

(C)间隔不变,向下移动。

(D)间隔不变,向上移动。

二.填空题

1.在双缝干涉实验中,两缝分别被折射率为n,和n2

为九的平行单色光垂直照射到双缝匕在屏中央处,两束相干光的相位差A<p=—(2-〃J•

2.把双缝干涉实验装置放在折射率为n的媒质中,双缝到观察屏的距离为D,两缝间的距离为

d(d«D),入射光在真空中的波长为九,则屏上干涉条纹中相邻明纹的间距是Ar=乌X

nd

三.计算题

1.在双缝干涉实验中,单色光源S到两缝S.和S,的距离分别为1,和H并且h-12=3九,九为入射

光的波长,双缝之间的距离为d,双缝到屏幕的距离为D,如图,求

(1)零级明纹到屏幕中央0点的距离;

(2)相邻明条纹间的距离.

X

解:由于,(/i-l2)-d—=O

所以,零级明纹到屏幕中央0点的距离:

3DA

x-------

d

由于,2-—Ax

D

相邻明条纹间的距离:Ax=3

d

2.双缝干涉实验装置如图所示,双缝与屏之间的距离D=120cm,两缝之间的距离d=0.50mm,

用波长入=5000A的单色光垂直照射双缝.

(1)求原点0(零级明条纹所在处)上.方的第五级明条纹的坐标.

(2)如果用厚度e=1.0X10-2mm浙射率n=1.58的透明薄膜覆盖在图中的s1缝后面,求上

述第五级明条纹的坐标X,.

解:求原点0(零级明条纹所在处)上方的第五级明条纹的坐标

U1_7

x-k-2=5x-------x5xl0-=6.0mm

d5x10-屏

DO

薄膜覆盖后,光程差:鼻

Yf

8=d^-(n-Y)e=kA

所以,xr=1.992cm

《大学物理》练习题No.17分振幅干涉

班级学号姓名成绩

一、选择题

1.如图所示,折射率为明、厚度为e的透明介质薄膜的上方和下方的透明介质的折射率分

别为n.和n3,已知ni<n2>n3»若用波长为九的单色平行光垂直入射到该薄膜上,则从薄膜

上、下两表面反射的光束(用①与②示意)的光程差是

2

[B](A)2nle(B)2n2e±—?

(C)2n.e±A(D)2%e±---

2«2

2.一束波长为X的单色光山空气垂直入射到折射率为n的透明薄膜上,透明薄膜放在空气

中,要使反射光得到干涉加强,则薄膜最小的厚度为

[B](A)A./4.(B)X/(4n).(C)X/2.(D)X/(2n).

3.空气劈尖干涉实验中,

[C](A)干涉条纹是垂直于棱边的直条纹,劈尖夹角变小时,条纹变稀,从中心向两边扩

展.

(B)干涉条纹是垂直于棱边的直条纹,劈尖夹角变小时,条纹变密,从两边向中心靠

拢.

(C)干涉条纹是平行于棱边的直条纹,劈尖夹角变小时,条纹变疏,条纹背向棱边扩

展.

(D)干涉条纹是平行于棱边的直条纹,劈尖夹角变小时,条纹变密,条纹向棱边靠拢.

4,把一平凸透镜放在平玻璃上,构成牛顿环装置。当平凸透镜慢慢地向上平移时,由反射

光形成的牛顿环

[B](A)向中心收缩,条纹间隔变小。

(B)向中心收缩,环心呈明暗交替变化。

(C)向外扩张,环心呈明暗交替变化。

(D)向外扩张,条纹间隔变大。

5.在迈克尔逊干涉仪的一条光路中,放入一折射率为n,厚度为d的透镜薄片,放入后,这

条光路的光程改变了

[A](A)2(n-l)d(B)2nd(C)2(n-1)d+-2(D)nd(E)(n-l)d

二、填空题

1.在空气中有一劈尖形透明物,劈尖角0=1.0X104弧度,在波长入=7000A的单色光垂直照射

下,测得两相邻干涉条纹间距l=0.25cm,此透明材料的折射率n=1.4

2.波长为九的单色光垂直照射到劈尖薄膜上,劈尖角为0,劈尖薄膜的折射率为n,第k级明条

纹与第k+5级明纹的间距是_____'___________.

2nd

3.若在迈克耳逊干涉仪的可动反射镜M移动0.620mm的过程中,观察到干涉条纹移动了

2300条,则所用光波的波长为5391A.

三、计算题

1.用白光垂直照射置于空气中厚度为0.50pm的玻璃片.玻璃片的折射率为1.50,在可见

光范围内(4000A〜76001),哪些波长的反射光有最大限度的增强

解:反射光有最大限度的增强满足条件,

2ndH——=kZ

2

k--

2

Z:=1,2=30000/1

=2,2=10000j

所以当

4=3,4=6000/

yt=4,2=4268/4

得到,波长为6000』与42681的反射光有最大限度的增强

2.用波长为500nm(lnm=10-9m)的单色光垂直照射到由两块光学平玻璃构成的空气劈尖

上。在观察反射光的I二涉现象中,距劈尖棱边1=1.56cm的A处是从棱边算起的第四条暗条

纹中心。

(1)求此空气劈尖的劈尖角。;

(2)改用600nm的单色光垂直照射到此劈尖上仍观察反射光的干涉条纹,A处是明条纹

还是暗条纹?

(3)在第(2)问的情形从棱边到A处的范围内共有几条明纹?几条暗纹?

解:劈尖顶部为暗条纹,由暗纹条件,

+]=(24+1)jd=/sin6p/8

2〃x1.56x10-2。+:=(2x3+1),

481

得到,空气劈尖的劈尖角。=吧乂10一5⑶4

n

因为,A处4=32,改用600nm的单色光3=3x500+理=1800〃加=3%

2

所以,改用600nm的单色光,A处是明条纹

所以,A处的范围内共有3条明纹,3条暗纹

《大学物理》练习题No.18光的衍射

班级学号姓名成绩

一、选择题

1.在如图所示的单缝夫琅和费衍射装置中,将单缝宽度a

稍稍变宽,同忖使单缝沿y轴正方向作微小位移,则屏幕C

上的中央衍射条纹将

[C](A)变窄,同时向上移。(B)变窄,同时向下移。

(C)变窄,不移动。(D)变宽,同时向上移。

(E)变宽,不移动。

2.在如图所示的单缝夫琅和费衍射实验中,若将单缝

沿透镜光轴方向向透镜平移,则屏幕上的衍射条纹

[C](A)间距变大。—

(B)间距变小。_

(C)不发生变化。

(D)间距不变,但明暗条纹的位置交替变化。

3.关于半波带正确的理解是

[B](A)将单狭缝分成许多条带,相邻条带的对应点到达屏上会聚点的距离之差为入射

光波长的1/2.

(B)将能透过单狭缝的波阵面分成许多条带,相邻条带的对应点的衍射光到达屏上

会聚点的光程差为入射光波长的1/2.

(C)将能透过单狭缝的波阵面分成条带,各条带的宽度为入射光波长的1/2.

(D)将单狭缝透光部分分成条带,各条带的宽度为入射光波长的1/2.

4.波长九=5000A的单色光垂直照射到宽度a=0.25mm的单缝上,单缝后面放置一凸透镜,

在凸透镜的焦面上放置一屏幕,用以观测衍射条纹,今测得屏幕上中央条纹一侧第三个暗条纹

和另一侧第:一个暗条纹之间的距离为d=12mm,则凸透镜的焦距为

[B](A)2m.(B)Im.(C)0.5m.(D)0.2m.(E)0.Im.

5.若星光的波长按5500A计算,孔径为127cm的大型望远镜所能分辨的两颗星的最小角距离

0(从地上一点看两星的视线间夹角)是

[D](A)3.2X107rad.(B)1.8X10^4rad.(C)5.3X105rad.(D)5.3X107rad

二、填空题

1.如果单缝夫琅和费衍射的第一级暗纹发生在衍射角为30。的方位上,所用单色光波长九=5X

IO?A,则单缝宽度为1.0义10-6加_.

2.平行单色光垂直入射于单缝上,观察夫琅和费衍射.若屏上P点处为第二级喑纹,则单缝处

波面相应地可划分为4个半波带.若将单缝宽度减小一半.P点将是—1

级暗纹.

3.己知天空中两颗星相对于一望远镜的角距离为6.71XloZad,它们发出的光波波长按5500

A计算.要分辨出这两颗星,望远镜的U镜至少要为Im.

三、计算题

1.单缝宽0.10mm,透镜焦距为50cm,用九=5X1()3A,得绿光垂直照射单缝,求位于透镜

焦平面处的屏幕上中央明条纹的宽度和半角宽度各为多少?若把此装置浸入水中

(n=1.33),中央明条纹的半角宽度又为多少?

解:因为,衍射角仰很小,所以,中央明条纹的半角宽度

2=5x107=5xl0-3rad

°aOLIO'

中央明条纹的宽度

/^x=2ftg(p~2f-

0a

=5xl0^m=5mm

若单缝装置浸入水中,中央明条纹的半角宽度

%=-=--------"I。-------=3.76x103rad

°na1.33x0.1x107

2.用橙黄色的平行光垂直照射到宽度a=0.60mm的单缝上,在缝后放置一个焦距440.0cm

的凸透镜,则在屏幕上形成衍射条纹,若在屏上离中央明条纹中心为1.40mm处的P点

为一明条纹。试求:(1)入射光的波长;(2)P点的条纹级数;(3)从P点看,对该光

波而言,狭缝处的波阵面可分为几个半波带(橙黄色光的波长约为5X1()3A〜6X103A)。

解:(1)设入射光波长为4,离屏中心x=1.4mm处为明条纹,

则由单缝衍射明条纹条件,x应满足

asin°=(2A:+l)

X=f-tg(p因为,sin。很小

所以,x=ftg(p~/sinA.

la

2ax2xO.6xlQ-3xl.4xlQ-3

/(2左+1)-0.4x(2%+1)

4.2x10-6

m

2k+\

当人=3,4=6xlO-m恰在橙黄色波长范围内,所以入射光波长为6000Z

(2)p点的条纹级数为3

(3)从p点看,对该光波而言,狭缝处波阵面可分成(2k+l)=7个半波带.

《大学物理》练习题No.19光栅X射线衍射

班级学号姓名成绩

一、选择题

1.波长九=5500A的单色光垂直照射到光栅常数d=2xl0-4cm的平面衍射光栅上,可能观察

到的光谱线的最大级次为

[B](A)2.(B)3.(C)4.(D)5.

2.一束平行单色光垂直入射到光栅上,当光栅常数(a+b)为下列哪种情况时(a代表每条缝为

宽度),k=3、6、9等级次的主极大均不出现?

[B](A)a+b=2a.(B)a+b=3a.(C)a+b=4a.(D)a+b=6a.

3.某元素的特征光谱中含有波长分别为九।=450nm和九2=750nm(1nm=10-。m)的光谱

线.在光栅光谱中,这两种波长的谱线有重叠现象,重叠处加的谱线的级次数将是

[D](A)2、3、4、5....(B)2、5、8、11....

(C)2、4、6、8....(D)3、6、9、12....

二、填空题

1.用平行的白光垂直入射在平面透射光栅上时,波长为猫=440nm的第3级光谱线,将与波长

为九2=660nm的第2级光谱线重叠.

2.每厘米6000条刻痕的透射光栅,使垂直入射的单色光的第一级谱线偏转20。角,这单色光的

波长是570nm.第二级谱线的偏转角是8=43.16°.

3.一束单色光垂直入射在光栅上,衍射光谱中共出现5条明纹.若已知此光栅每缝的宽度与

不透光部分宽度相等,那麽在中央明纹一侧的两条明纹分别是第级和第级谱线.

三、计算题

1.波长4=600nm的单色光垂直入射到•光栅匕测得第二级主极大衍射角为30。,且第三

级是缺级。

(1)光栅常数(a+b)等于多少?

(2)透光缝可能的最小宽度a等于多少?

解:由光栅方程,t/sin^=±U

得到,(a+6)sin30°=2x6.0xl0-7

所以,光栅常数(a+6)=2.4x1

由缺级条件,®±H=3得到透光缝可能的最小宽度o=0.8xl0-<,m

a

2.一衍射光栅,每厘米有200条透光缝,每条透光缝宽为。=2x107cm,在光栅后放一焦

距f=lm的凸透镜,现以4=600nm的单色平行光垂直照射光栅,求:

(1)透光缝a的单缝衍射中央明纹宽度为多少?

(2)在该宽度内,有几个光栅衍射主极大?

解:透光缝a的单缝衍射中央明纹角宽度为

2

△夕=—=3.0x102rad

所以,单缝衍射中明条纹宽度:M=W(p=63cm

由于,d=5.0x10'm.—=2.5所以,k'=0,±1,±2»

a

所以,在该宽度内,有5个光栅衍射主极大

《大学物理》练习题No.20光的偏振

班级学号姓名成绩

一、选择题

1.使一光强为/。的平面偏振光先后通过两个偏振片P1和巴。巴和尸2的偏振化方向与原入

射光光矢量振动方向的夹角分别是a和90°,则通过这两个偏振片后的光强【是

22

[C](A)Iocosa(B)0(C)-^-/0sin(2«)

(D)sin2a(E)I。cos4a

2.一束光强为/0的自然光,相继通过三个偏振片P।、匕、心后,出射光的光强为/=/。/8。

已知力和心的偏振化方向相互垂直,若以入射光线为轴,旋转22,要使出射光的光强为零,

22最少要转过的角度是

[B](A)30°(B)45°(C)60c(D)90°

3.自然光以60°的入射角照射到不知其折射率的某一透明介质表面时,反射光为线偏振光,

则知

[B](A)折射光为线偏振光,折射角为30°。

(B)折射光为部分偏振光,折射角为30°。

(C)折射光为线偏振光,折射角不能确定。

(D)折射光为部分偏振光,折射角不能确定。

4.某种透明介质对于空气的临界角(指全反射)等于45°,光从空气射向此介质的布儒斯特

角是

[D](A)35.3°(B)40.9°(C)45°

(D)54.7°(E)57.3°

5.一束光是自然光和线偏振光的混合光,让它垂直通过一偏振片。若以此入射光束为轴旋

转偏振片,测得透射光强度最大值是最小值的5倍,那么入射光束中自然光与线偏振光的光

强比值为

1112

[A](A)-(B)-(C)-(D)-

二、填空题

1.一束光线入射到光学单轴晶体后,成为两束光线,沿着不同方向折射,这样的现象称为双折射

现象.其中一束折射光称为寻常光;它遵守折射定律:另一束光线称为非常

光,它不遵守折射定律.

2.•束自然光从空气投射到玻璃表面上(空气折射率为1),当折射角为30°时,反射光是完

全偏振光,则此玻璃板的折射率等于6

3.两个偏振片叠放在一起,强度为I。的自然光垂直入射其上,不考虑偏振片的吸收和反射,

若通过两个偏振片后的光强为九,则此两偏振片的偏振化方向间的夹角是一。=60°_,若

8

在两片之间再插入一片偏振片,其偏振化方向与前后两偏振化方向的夹角相等。则通过三个

91

偏振片后的透射光强度为_____—I/—/________。

32o320

三、计算题

1,使自然光通过两个偏振化方向夹角为60°的偏振片时,透射光强为h,今在这两个偏振

片之间再插入一偏振片,它的偏振化方向与前两个偏振片均为30°,则此时透射光强I

与L之比为多少?

解:设自然光强度为/。,通过第一偏振片后光强度为/。/2,

依题意,由马吕斯公式可得透过第二偏振片后的光强为

I.cos260°所以,7=87.

20

今在两偏振片之间再插入另一偏振片,则通过该偏振片后的光强为

/'=&os230°=3/o=34

28

再通过第三偏振片后的光强

9

/=3/】cos2930°=-7,

所以,—=2.25

A

2.水和玻璃的折射率分别为1.33和1.50。如果由水中射向玻璃而反射;起偏角多少?如果

由玻璃射向水中而反射,起偏角又为多少?

解:当光由水射向玻璃时;按布儒斯特定律可求得起偏振角

4=义-|如=名-|耳=48。27'

〃水1.33

当光山玻璃射向水时

4=名』」左=总7黑=41。34'

〃玻璃1

《大学物理》练习题No.21狭义相对论的基本原理及其时空观

班级学号姓名成绩

-•、选择题

1.静止参照系S中有一尺子沿x方向放置不动,运动参照系沿X轴运动,S、的坐标轴

平行.在不同参照系测量尺子的长度时必须注意[C]

(A)与S中的观察者可以不同时地去测量尺子两端的坐标.

(B)S,中的观察者可以不同时,但S中的观察者必须同时去测量尺子两端的坐标.

(C)S,中的观察者必须同时,但S中的观察者可以不同时去测量尺子两端的坐标.

(D)S,与S中的观察者都必须同时去测量尺子两端的坐标.

2.下列几种说法:

(1)所有惯性系对•切物理规律都是等价的.

(2)真空中,光的速度与光的频率、光源的运动状态无关.

(3)在任何惯性系中,光在真空中沿任何方向的传播速度都相同.

其中哪些正确的?[D]

(A)只有(1)、(2)是正确的.

(B)只有(1)、(3)是正确的.

(C)只有(2)、(3)是正确的.

(D)三种说法都是正确的.

3.边长为a的正方形薄板静止于惯性系K的xOy平面内,且两边分别与x轴、y轴平行,

今有惯性系K,以0.8c(c为真空中光速)的速度相对于K系沿x轴作匀速直线运动,则从

K,系测得薄板的面积为[B]

(A)a2.(B)0.6a2.(C)0.8a2.(D)a2/0.6.

4.在某地发生两件事,静止位于该地的甲测得时间间隔为6s,若相对甲以4c/5(c表示真空

中光速)的速率作匀速直线运动的乙测得时间间隔为[A]

(A)10s.(B)8s.(C)6s.(D)3.6s.(E)4.8s.

5.(1)对某观察者来说,发生在某惯性系中同一地点,同一时刻的两个事件,对于相对该惯性系

作匀速直线运动的其它惯性系的观察者来说,它们是否同时发生?

(2)在某惯性系中发生于同一时亥IJ,不同地点的两个事件,它们在其它惯性系中是否同时发

生?

关于上述两问题的正确答案是:[A]

(A)(1)一定同时,(2)一定不同时.

(B)(1)一定不同时,(2)一定同时.

(C)(1)一定同时,(2)一定同时.

(D)(1)—■定不同时,(2)一定不同时.

二、填空题

1.有一速度为u的宇宙飞船沿x轴的正方向飞行,飞船头尾各有一个脉冲光源在工作,处

于船尾的观察者测得船头光源发出的光脉冲的传播速度大小为处于船头的观

察者测得船尾光源发出的光脉冲的传播速度大小为

2.牛郎星距地球约16光年,宇宙飞船若以晅c距)的速度飞行.将用4年

的时间(宇宙飞船上钟指示的时间)抵达牛郎星.

3.观察者测得运动棒的长度是它静止长度的一半,设棒沿其长度方向运动,则棒相对于观

察者运动的速度是—迫c_.

三、计算题

1.观察者甲和乙分别静止于两惯性参照系K和K,中,甲测得在同一地点发生的两事件的时

间间隔为4s,而乙测得这两事件的时间间隔为5s.求

(1)X相对于K的运动速度;

(2)乙测得这两个事件发生地点的空间距离.

解:由于,T

3

得到,K,相对于K的运动速度“=-C

由于,X,

所以,乙测得这两个事件发生地点的空间距离

2.静止长度为90m的宇宙飞船以相对地球0.8c的速度飞离地球,一光脉冲从船尾传到船头.

求:(1)飞船上的观察者测得该光脉冲走的时间和距离;(2)地球上的观察者测得该光脉冲走

的时间和距离.

解:(1)飞船上的观察者测得该光脉冲走的时间

^=90=3.0x10-75

品巨离s=Lo

⑵地球上的观察者测得该光脉冲走的距离L

时间/=0=i.8xi(r7s

《大学物理》练习题No.22相对论动力学基础

班级学号姓名成绩

一、选择题

1.圆柱形均匀棒静止时的密度为po,当它以速率u沿其长度方向运动时;测得它的密度为p,

则两测量结果的比P:PO是D

(A)71-M2/C2.(B)l/Vl-w2/c2.(C)l-u2/c2.(D)1/(1-u2/c2).

2.把一个静止质量为m°的粒子由静止加速到0.6c,需要做的功是B

222

(A)0.225moe2.(B)0.25m()c.(C)0.36moc.(D)O.18moc.

3.电子的静止质量m。,当电子以0.8c的速度运动时,它的动量p,动能Ek和能量E分别是A

22

(A)p=4moc/3,EK=2m0c/3,E=5m()c/3.

(B)p=0.8moc,EK=0.32moc2,E=0.64moc2.

22

(C)p=4m()c/3,EK=8moc/18,E=5moc/3.

22

(D)p=O.8moc,EK=2moc/3,E=0.64moc.

4.一观察者测得电子质量是其静止质量m0的两倍,则电子相对观察者的速率V、动能Ek

分别是C

(A)VJc/2,2moc2.(B)c/2,2moe5

(C)百c/2,moc2.(D)c/2,moc2.

5某核电站年发电量为100亿度,它等于3.6X10叼.如果这些能量是由核材料的全部静止能

转化产生的,则需要消耗的核材料的质量为A

(A)0.4kg.(B)0.8kg.(C)12X107kg.(D)(1/12)X107kg.

二、填空题

1.粒子的动量是其非相对论动量的两倍,则粒子的速度是一立c_,当粒子的动能是其非相对

-2-

论动能的两倍时,则粒子的速度为.

2.观察者甲以的速度(c为真空中光速)相对于观察者乙运动,若甲携带一长度为/、截

5

面积为S、质量为m的棒,这根棒安放在运动方向上,则

(1)甲测得此棒的密度为—心

(2)乙测得此棒的密度为―

0.36SI

3.某加速器将电子加速到能量E=2Xl()6ev时

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论