2022-2023学年湖北省荆门市马良中学高三数学理月考试题含解析_第1页
2022-2023学年湖北省荆门市马良中学高三数学理月考试题含解析_第2页
2022-2023学年湖北省荆门市马良中学高三数学理月考试题含解析_第3页
2022-2023学年湖北省荆门市马良中学高三数学理月考试题含解析_第4页
2022-2023学年湖北省荆门市马良中学高三数学理月考试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年湖北省荆门市马良中学高三数学理月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知函数是定义在实数集R上的奇函数,且当时,成立(其中的导函数),若,,则的大小关系是()

A.

B.

C.

D.参考答案:A略2.已知双曲线的左、右焦点分别是,正三角形的一边与双曲线左支交于点,且,则双曲线的离心率的值是(

)A.

B.

C.

D.参考答案:B3.已知a=log23,b=,c=log53,则()A.c<a<b B.a<b<c C.b<c<a D.b<a<c参考答案:A【考点】对数值大小的比较.【分析】利用指数函数与对数函数的单调性即可得出.【解答】解:a=log23=,c=log53==<=a,另一方面:a=<=,b=,∴c<a<b.故选:A.4.已知向量a=(1,—1),b=(2,x).若a·b=1,则x=(A)—1

(B)—

(C)

(D)1参考答案:D,故选D【点评】本题主要考查向量的数量积,属于容易题。5.将y=cosx的图象上的所有点的纵坐标不变,横坐标缩小到原来的一半,然后再将所得图象向左平移个单位长度,则最后所得图象的解析式为()A.y=cos(2x+) B.y=cos(+) C.y=sin2x D.y=﹣sin2x参考答案:D【考点】HJ:函数y=Asin(ωx+φ)的图象变换.【分析】利用函数y=Asin(ωx+φ)的图象变换规律,得出结论.【解答】解:将y=cosx的图象上的所有点的纵坐标不变,横坐标缩小到原来的一半,可得y=cos2x的图象;然后再将所得图象向左平移个单位长度,则最后所得图象的解析式为y=cos2(x+)=﹣sin2x,故选:D.【点评】本题主要考查函数y=Asin(ωx+φ)的图象变换规律,属于基础题.6.已知不等式的解集为,点在直线上,其中,则的最小值为

(A)

(B)8

(C)9

(D)12参考答案:D略7.定义在R上的偶函数f(x),对任意x1,x2∈[0,+∞)(x1≠x2),有,则()A.f(3)<f(-2)<f(1)

B.f(1)<f(-2)<f(3)C.f(-2)<f(1)<f(3)

D.f(3)<f(1)<f(-2)参考答案:A8.已知平面向量,且,则实数m的值为(

)A.B.C.D.参考答案:B9.已知双曲线C1:﹣=1(a>0,b>0)的右焦点F也是抛物线C2:y2=2px(p>0)的焦点,C1与C2的一个交点为P,若PF⊥x轴,则双曲线C1的离心率为(

) A.+1 B.2 C.2﹣1 D.+1参考答案:A考点:抛物线的简单性质;双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:根据抛物线的方程算出其焦点为F(,0),得到|PF|=p.设双曲线的另一个焦点为F′,由双曲线的右焦点为F算出双曲线的焦距|FF′|=p,△TFF′中利用勾股定理算出|MF′|=p,再由双曲线的定义算出2a=(﹣1)p,利用双曲线的离心率公式加以计算,可得答案.解答: 解:抛物线y2=2px的焦点为F(,0),由MF与x轴垂直,令x=,可得|MF|=p,双曲线﹣=1的实半轴为a,半焦距c,另一个焦点为F',由抛物线y2=2px的焦点F与双曲线的右焦点重合,即c=,可得双曲线的焦距|FF′|=2c=p,由于△MFF′为直角三角形,则|MF′|==p,根据双曲线的定义,得2a=|MF′|﹣|MF|=p﹣p,可得a=()p.因此,该双曲线的离心率e===.故选:A.点评:本题给出共焦点的双曲线与抛物线,在它们的交点在x轴上射影恰好为抛物线的焦点时,求双曲线的离心率.着重考查了抛物线和双曲线的定义与标准方程、简单几何性质等知识,属于中档题.10.已知集合M={﹣1,1},N=,则M∩N=()A.{﹣1,1} B.{﹣1} C.{0} D.{﹣1,0}参考答案:B【考点】交集及其运算.【分析】N为指数型不等式的解集,利用指数函数的单调性解出,再与M求交集.求【解答】解:?2﹣1<2x+1<22?﹣1<x+1<2?﹣2<x<1,即N={﹣1,0}又M={﹣1,1}∴M∩N={﹣1},故选B二、填空题:本大题共7小题,每小题4分,共28分11.某学校拟建一块周长为400米的操场,如图所示,操场的两头是半圆形,中间区域是矩形,学生做操一般安排在矩形区域,为了能让学生的做操区域尽可能大,矩形的长应该设计成

米.参考答案:试题分析:设矩形的长为米,半圆的直径为,中间矩形的面积为,依题意可得,,当且仅当时,学生的做操区域最大.即矩形的长应该设计成米.考点:1.函数的应用;2.二次函数的图象和性质;3.基本不等式.12.如图所示,直线与双曲线C:的渐近线交于两点,记,.任取双曲线C上的点,若(、),则、满足的等式是

.参考答案:4ab=113.计算定积分___________。参考答案:14.已知则的值

.参考答案:15.若关于,的不等式组(为常数)所表示的平面区域的面积等于2,则的值为

.

参考答案:先做出不等式对应的区域如图。因为直线过定点,且不等式表示的区域在直线的下方,所以三角形ABC为不等式组对应的平面区域,三角形的高为1,所以,所以,当时,,所以,解得。16.已知实数x,y满足不等式组则z=x+y的最小值为.参考答案:﹣13【考点】简单线性规划.【分析】作出题中不等式组表示的平面区域,得如图的△ABC及其内部,再将目标函数z=2x+y对应的直线进行平移,可得当x=y=1时,z=2x+y取得最小值.【解答】解:作出不等式组表示的平面区域:得到如图的阴影部分,由解得B(﹣11,﹣2)设z=F(x,y)=x+y,将直线l:z=x+y进行平移,当l经过点B时,目标函数z达到最小值,∴z最小值=F(﹣11,﹣2)=﹣13.故答案为:﹣13【点评】本题给出二元一次不等式组,求目标函数的最小值,着重考查了二元一次不等式组表示的平面区域和简单的线性规划等知识,属于基础题.17.已知为定义在上的偶函数,当时,有,且当时,,则的值为

.参考答案:1略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.在锐角中,.(1)求角;(2)若,求的面积.参考答案:(1)因为,所以,则,即,由为锐角三角形得.(2)在中,,即,化简得,解得(负根舍去),所以.19.(12分)在一次语文测试中,有一道把我国四大文学名著《水浒传》、《三国演义》、《西游记》、《红楼梦》与它们的作者连线题,已知连对一个得2分,连错一个不得分.求:

(1)该同学恰好得2分的概率;

(2)该同学得分不少于4分的概率.参考答案:解析:(1)该同学恰好得2分的概率为………6分(2)设该同学得4分、8分的概率分别为、则

,该同学得分不少于6分的概率为

………………12分20.在△ABC中,内角A,B,C的对边分别为a,b,c.已知.(Ⅰ)求角A的大小;(Ⅱ)若,,求BC边上的高.参考答案:【考点】余弦定理;正弦定理.【分析】(Ⅰ)由正弦定理及三角函数恒等变换化简已知等式可得cosAsinB=sinB,由sinB≠0,解得cosA,结合A的范围即可得解.(Ⅱ)由余弦定理可解得:,设BC边上的高为h,由,即可解得h的值.【解答】(本题满分为15分)解:(Ⅰ)由及正弦定理可得:,…因为sinC=sin(A+B)=sinAcosB+cosAsinB,所以,…因为sinB≠0,所以,…因为0<A<π,所以.…(Ⅱ)由余弦定理可知:,…所以:,解得:.…设BC边上的高为h,由,…得:,…解得:h=1.

…21.本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xoy中,直线l的参数方程是(t为参数),若以O点为极点,x轴正半轴为极轴建立极坐标系,则曲线C的极坐标方程为.(Ⅰ)求曲线C的直角坐标方程及直线l的普通方程;(Ⅱ)将曲线C上各点的横坐标缩短为原来的,再将所得曲线向左平移1个单位,得到曲线,求曲线上的点到直线l的距离的最小值.参考答案:Ⅰ)……………2分……………5分(Ⅱ)……………10分略22.某企业招聘工作人员,设置、、三组测试项目供参考人员选择,甲、乙、丙、丁、戊五人参加招聘,其中甲、乙两人各自独立参加组测试,丙、丁两人各自独立参加组测试.已知甲、乙两人各自通过测试的概率均为,丙、丁两人各自通过测试的概率均为.戊参加组测试,组共有6道试题,戊会其中4题.戊只能且必须选择4题作答,答对3题则竞聘成功.(Ⅰ)求戊竞聘成功的概率;(Ⅱ)求参加组测试通过的人数多于参加组测试通过的人数的概率;(Ⅲ)记、组测试通过的总人数为,求的分布列和期望.参考答案:(Ⅰ)设戊竞聘成功为A事件,则

....................2分

(Ⅱ)设“参加组测试通过的人数多于参加组测试通过的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论