




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
辽宁省沈阳市第一五八高级中学高二数学理上学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知实数,则下列不等式中不能恒成立的一个是(
)A. B.
C. D.参考答案:D2.函数f(x)的定义域为开区间(a,b),导函数在(a,b)内的图像如图所示,则函数f(x)在开区间(a,b)内有极小值点有A、1个
B、2个
C、3个
D、4个
参考答案:A略3.已知,则方程与在同一坐标系下的大致图形可能是(
)参考答案:C略4.(
)A. B. C. D.参考答案:D5.过点与直线垂直的直线的方程为(
)A.B.C.D.
参考答案:C略6.如图所示正方形ABCD,E、F分别是AB、CD的中点,则向正方形内随机掷一点P,该点落在阴影部分内的概率为(
)A. B. C. D.参考答案:D【分析】根据正方形的对称性求得阴影部分面积占总面积的比例,由此求得所求概率.【详解】根据正方形的对称性可知,阴影部分面积占总面积的四分之一,根据几何概型概率计算公式可知点落在阴影部分内的概率为,故选D.【点睛】本小题主要考查几何概型的计算,属于基础题.7.我国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一直角边为股,斜边为弦。若a,b,c为直角三角形的三边,其中c为斜边,则,称这个定理为勾股定理.现将这一定理推广到立体几何中:在四面体O-ABC中,,S为顶点O所对面的面积,分别为侧面的面积,则下列选项中对于满足的关系描述正确的为(
)A. B.C. D.参考答案:C【分析】作四面体,,于点,连接,结合勾股定理可得答案。【详解】作四面体,,于点,连接,如图.即故选C.【点睛】本题主要考查类比推理,解题的关键是将勾股定理迁移到立体几何中,属于简单题。8.复数2﹣i的共轭复数是(
)A、2+i
B、1+2i
C、﹣2﹣i
D、﹣2+i参考答案:A【考点】虚数单位i及其性质
【解析】【解答】解:复数2﹣i的共轭复数为2+i.故选:A.
【分析】利用共轭复数的定义即可得出.
9.在数列中,,则的值为:
(
)(A)49
(B)50
(C)51
(D)52参考答案:D略10.如图,设向量=(3,1),=(1,3),若=λ+μ,且μ≥λ≥1,则用阴影表示C点的位置区域正确的是()参考答案:C略二、填空题:本大题共7小题,每小题4分,共28分11.在中,,,是的中点,,则等于
.参考答案:延长至N,使,连接,则四边形为平行四边形,,在中,,在中,,,.
12.a是三个正数a、b、c中的最大的数,且=,则a+d与b+c的大小关系是_______________.参考答案:a+d>b+c解析:设==k,依题意可知d>0,k>1,且c>d,b>d,∴(a+d)-(b+c)=bk+d-b-dk=(b-d)(k-1)>013.已知椭圆的焦点分别为,若该椭圆上存在一点使得,则椭圆离心率的取值范围是
。参考答案:略14.椭圆Γ:=1(a>b>0)的左右焦点分别为F1,F2,焦距为2c,若直线y=与椭圆Γ的一个交点M满足∠MF1F2=2∠MF2F1,则该椭圆的离心率等于.参考答案:【考点】直线与圆锥曲线的关系;椭圆的简单性质.【分析】由直线可知斜率为,可得直线的倾斜角α=60°.又直线与椭圆Γ的一个交点M满足∠MF1F2=2∠MF2F1,可得,进而.设|MF2|=m,|MF1|=n,利用勾股定理、椭圆的定义及其边角关系可得,解出a,c即可.【解答】解:如图所示,由直线可知倾斜角α与斜率有关系=tanα,∴α=60°.又椭圆Γ的一个交点满足∠MF1F2=2∠MF2F1,∴,∴.设|MF2|=m,|MF1|=n,则,解得.∴该椭圆的离心率e=.故答案为.15.经过两点P1(,),P2(0,)的椭圆的标准方程为__________.参考答案:解:设方程为,代入,得,,解得,,故方程为.16.设矩阵的逆矩阵为,则=
▲
.参考答案:017.一个几何体的三视图及部分数据如图所示,正视图、侧视图和俯视图都是等腰直角三角形,则该几何体的外接球体积为 .参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知四棱柱ABCD﹣A1B1C1D1的底面ABCD是边长为2的菱形,AC∩BD=O,AA1=2,BD⊥A1A,∠BAD=∠A1AC=60°,点M是棱AA1的中点.(1)求证:A1C∥平面BMD;(2)求证:A1O⊥平面ABCD;(3)求三棱锥B﹣AMD的体积.参考答案:【考点】棱柱、棱锥、棱台的体积;直线与平面平行的判定;直线与平面垂直的判定.【分析】(1)根据线面平行的性质即可证明A1C∥平面BMD;(2)根据线面垂直的判定定理即可证明A1O⊥平面ABCD;(3)利用体积转化法即可求三棱锥B﹣AMD的体积.【解答】证明:(1)连结MO,则?MO∥AC,∵MO?平面BMD,A1C?平面BMD,∴A1C∥平面BMD.(2)∵BD⊥AA1,BD⊥AC,∴BD⊥平面A1AC,于是BD⊥A1O,AC∩BD=O,∵底面ABCD是边长为2的菱形,且∠BAD=60°,∴AO=,AA1=,cos∠A1AC=60°,∴A1O⊥AC,∵A1O⊥BD,∴A1O⊥平面ABCD;(3)体积转换法:∵A1O⊥平面ABCD,M为A1O的中点,∴M到平面ABCD的距离为,三角形ABD的面积为,.19.(本小题12分)已知函数(1)若在和处取得极值,求,的值;(2)若为实数集R上的单调函数,且,设点P的坐标为,试求出点P的轨迹所形成的图形的面积S.参考答案:略20.已知椭圆C:x2+3y2=4.(I)求椭圆的离心率;(Ⅱ)试判断命题“若过点M(1,0)的动直线l交椭圆于A,B两点,则在直角坐标平面上存在定点N,使得以线段AB为直径的圆恒过点N”的真假,若为真命题,求出定点N的坐标;若为假命题,请说明理由.参考答案:【考点】椭圆的简单性质.【专题】综合题;方程思想;综合法;圆锥曲线的定义、性质与方程.【分析】(Ⅰ)由题意求出a,b的值,结合隐含条件求得c,则椭圆的离心率可求;(Ⅱ)假设存在定点N,使得以线段AB为直径的圆恒过点N,然后分直线AB的斜率存在和不存在求解,当斜率存在时,设出直线方程,与椭圆方程联立,利用根与系数的关系及AN⊥BN列式求得N的坐标;当斜率不存在时,验证AN⊥BN成立即可.【解答】解:(Ⅰ)由椭圆方程知a2=4,,∵a2=b2+c2,∴,则,∴椭圆的离心率为;(Ⅱ)真命题.由椭圆的对称性知,点N在x轴上,设N(t,0),①当直线AB的斜率存在时,设其方程为y=k(x﹣1),设A(x1,y1),B(x2,y2),由得,(1+3k2)x2﹣6k2x+3k2﹣4=0.∴△=4(9k2+4)>0,,,∵以线段AB为直径的圆过点N,∴AN⊥BN,∴,则(x1﹣t)(x2﹣t)+y1y2=0,∴,∴,则,即﹣4﹣6tk2+t2+3t2k2=0,∴3tk2(t﹣2)+(t2﹣4)=0,即(t﹣2)(3tk2+t+2)=0.∴若以线段AB为直径的圆恒过点N(t,0),则t﹣2=0,即t=2,∴当直线AB的斜率存在时,存在N(2,0)使命题是真命题;②当直线AB的斜率不存在时,其方程为x=1.A(1,1),B(1,﹣1),以线段AB为直径的圆的方程为(x﹣1)2+y2=1,∵N(2,0)满足方程(x﹣1)2+y2=1,∴当直线AB的斜率不存在时,点N(2,0)也能使命题是真命题.综上①②知,存在点N(2,0),使命题是真命题.【点评】本题考查椭圆标准方程的求法,考查了直线与圆锥曲线位置关系的应用,训练了存在性问题的求解方法,体现了分类讨论的数学思想方法,属中档题.21.如图,已知长方形ABCD中,AB=2,AD=1,M为DC的中点.将△ADM沿AM折起,使得平面ADM⊥平面ABCM,E为BD的中点.(1)求证:BM⊥平面ADM;(2)求直线AE与平面ADM所成角的正弦值.参考答案:【考点】直线与平面所成的角;直线与平面垂直的判定.【专题】数形结合;综合法;空间角.【分析】(1)根据线面垂直的判定定理证明即可;(2)求出平面ADM的一个法向量,求出,的余弦值,从而求出直线AE与平面ADM所成角的正弦值.【解答】解:(1)△ABM中,AB=2,,∴AM⊥BM,又平面ADM⊥平面ABCM,平面ADM∩平面ABCM=AM,且BM?平面ABCM,∴BM⊥平面ADM…(6分)(2)如图,以M点为坐标原点,MA所在直线为x轴,MB所在直线为y轴建立空间直角坐标系,则M(0,0,0),,,,
∵E为BD中点,∴,,由(1)知,为平面ADM的一个法向量,,,∴直线AE与平面ADM所成角的正弦值为…(12分)【点评】本题考查了线面垂直的判定,考查平面的法向量问题,考查线面角问题,是一道中档题.22.已知,函数.(1)若有极小值且极小值为0,求a的值.(2)当时,,求a的取值范围参考答案:(1)(2).试题分析:(1)先求导数,再根据a的正负讨论导函数零点情况,当时只有一个零点,且为极小值,再根据极小值为0,求的值;当时讨论两个零点大小,先确定极小值取法,再根据极小值为0,求的值;(2)先化简不等式为,再对时,变量分离,转化为讨论对应函数最值问题最小值,先根据与同号得>0,再根据放缩证明最小值恒大于零且趋于零,综合可得的取值范围.试题解析:(Ⅰ).①若,则由解得,当时,递减;当上,递增;故当时,取极小值,令,得(舍去).②若,则由,解得.(i)若,即时,当,.递增;当上,递减;当上,递增.故当时,取极小值,令,得(舍去)(ii)若,即时,递增不存在极值;(iii)若,即时,当上,递增;,上,递减;当上,递增.故当时,取极小值,得满足条件.故当有极小值且极小值0时,(Ⅱ)方法一:等价于,即,即
①当时,①式恒成立;以下求当时不等式恒成立,且当时不等式恒成立时的取值范围.令,即,记.(i)当即时,是上的增函数,所以,故当时,①式恒成立;(ii)当即时,令,若,即时,则在区间(1,0)上有两个零点,其中,故在上有两个零点:,在区间和上,递增;在区间上,递减;故在区间上,取极大值,
②注意到,所以,所以,注意到,在区间上,递增,所以,当时,.故当时,在区间上,,而在区间上.当时,,也满足当时,;当时,.故当时,①式恒成立;
(iii)若,则当时,,即,即当时,①式不可能恒成立.综上所述,所求的取值范围是.方法
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《英语情景对话实践:商务英语交流能力教案》
- 2021学年上海复旦附中高一(下)期中英语试题及答案
- 离思五首其一:古代诗词情感解读教案
- 小学演讲活动方案
- 酒店承包经营协议书
- 银行贷款审批实务问题
- 公交公司售卡活动方案
- 公交开通活动方案
- 技术开发保密与成果共享协议条款修订
- 公众号赠书活动方案
- 2024届江苏省徐州市、南通市等2地高三第二次调研测试语文试题
- 智能化立体停车楼项目分析报告
- 超声检查健康宣教课件
- 广西创业担保贷款培训课件
- 2024届江苏省南京市联合体数学七年级第二学期期末监测试题含解析
- 《现场改善技巧》课件
- 国开电大《人文英语3》一平台机考总题库珍藏版
- 玻璃隔断墙施工方案
- Python GUI设计:tkinter菜鸟编程
- 新家庭如何塑造人
- 2024届新高考数学热点冲刺复习“三新”背景下如何提高成绩+以《数列》为例浅谈教材使用
评论
0/150
提交评论