




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
一、知识回顾
大量试验表明,在任何确定次数的随机试验中,一个随机事件A发生的频率具有随机性.一般地,随着试验次数n的增大,频率偏离概率的幅度会缩小,即事件A发生的频率fn(A)会逐渐稳定于事件A发生的概率P(A).我们称频率的这个性质为频率的稳定性.因此,我们可以用频率fn(A)大数定律阐述了随着试验次教估计概率P(A).
用频率估计概率,需要做大量的重复试验.有没有其他方法可以替代试验呢?二、探究新知
随机教与伪随机数例如我们要产生0~9之间的随机整数,像彩票摇奖那样,把10个质地和大小相同的号码球放入摇奖器中,充分搅拌后摇出一个球,这个球上的号码就称为随机数.计算器或计算机产生的随机数是按照确定的算法产生的数,具有周期性(周期很长),它们具有类似随机数的性质.因此,计算器或计算机产生的随机数不是真正的随机数,我们称它们为伪随机数.
我们知道,利用计算器或计算机软件可以产生随机数.实际上,我们也可以根据不同的随机试验构建相应的随机数模拟试验,这样就可以快速地进行大量重复试验了.二、探究新知
又如,一个袋中装有2个红球和3个白球,这些球除颜色不同外没有其他差别.对于从袋中摸出一个球的试验,我们可以让计算器或计算机产生取值于集合{1,2,3,4,5}的随机数,用1、2表示红球,用3、4、5表示白球.这样不断产生1~5之间的整数随机数,相当于不断地做从袋中摸球的试验.
例如,对于抛掷一枚质地均匀硬币的试验,我们可以让计算器或计算机产生取值于集合{0,1}的随机数,用0表示反面朝上,用1表示正面朝上.这样不断产生0、1两个随机数,相当于不断地做抛掷硬币的试验.
蒙特卡洛方法是在第二次世界大战期间兴起和发展起来的,它的奠基人是冯•诺依曼.这种方法.在应用物理、原子能、国体物理、化学、生物、生态学、社会学以及经济行为等领城中都得到了广泛的应用.三、蒙特卡洛方法
下表是用电子表格软件模拟上述摸球试验的结果,其中n为试验次数,nA为摸到红球的频数,fn(A)为摸到红球的频率.n102050100150200250300nA6720456677104116fn(A)0.60.350.40.450.440.3850.4160.39
利用随机模拟解决问题的方法为蒙特卡洛方法.fnn102050100150200250300例1从你所在班级任意选出6名同学,调查他们的出生月份,假设出生在一月,二月,…,十二月是等可能的.设事件A=“至少有两人出生月份相同”,设计一种试验方法,模拟20次,估计事件A发生的概率.四、典型例题解:方法1
根据假设,每个人的出生月份在12个月中是等可能的,而且相互之间没有影响,所以观察6个人的出生月份可以看成可重复试验.因此,可以构建如下有放回摸球试验进行模拟:在袋子中装入编号为1,2,…,12的12个球,这些球除编号外没有什么差别.有放回地随机从袋中摸6次球,得到6个数代表6个人的出生月份,这就完成了一次模拟试验.如果这6个数中至少有2个相同,表示事件A发生了.重复以上模拟试验20次,就可以统计出事件A发生的频率.方法2
利用电子表格软件模拟试验.在A1、B1、C1、D1、E1、F1单元格分别输人“=RANDBETWEEN(1,12)”,得到6个数,代表6个人的出生月份,完成一次模拟试验.选中A1、B1、C1、D1、E1、F1单元格,将鼠标指向右下角的黑点,按住鼠标左键拖动到第20行,相当于做20次重复试验.统计其中有相同数的频率,得到事件A的概率的估计值.
下表是20次模拟试验的结果.事件A发生了14次,事件A的概率估计值为0.75,与事件A的概率(约0.78)相差不大.例2
在一次奥运会男子羽毛球单打比赛中,运动员甲和乙进入了决赛.假设每局比赛甲获胜的概率为0.6,乙获胜的概率为0.4.利用计算机模拟试验,估计甲获得冠军的概率.解:四、典型例题设事件A=“甲获得冠军”,事件B=“单局比赛甲胜”,则P(B)=0.6.
用计算器或计算机产生1~5之间的随机数,当出现随机数1、2或3时,表示一局比赛甲获胜,其概率为0.6.由于要比赛3局,所以每3个随机数为一组.例如,产生20组随机数:
用随机模拟的方法得到的是20次试验中事件A发生的频率,它是概率的近似值事件A的概率的精确值为0.648.423123423344114453525332152342534443512541125432334151314354相当于做了20次重复试验.其中事件A发生了13次,对应的数组分别是423,123,423,114,332,152,342,512,125,432,334,151,314,用频率估计事件A的概率的近似为=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 太原学院《学前游戏理论与设计》2023-2024学年第二学期期末试卷
- 南阳职业学院《合唱与指挥3》2023-2024学年第二学期期末试卷
- 贵州民用航空职业学院《生物分离工程理论》2023-2024学年第二学期期末试卷
- 四川铁道职业学院《乐理(1)》2023-2024学年第二学期期末试卷
- 西安工程大学《临床研究质量管理》2023-2024学年第二学期期末试卷
- 牡丹江医学院《保育员职业资格培训》2023-2024学年第二学期期末试卷
- 江西应用科技学院《临床检验技术实验》2023-2024学年第二学期期末试卷
- 泉州经贸职业技术学院《公共体育健美操》2023-2024学年第二学期期末试卷
- 生态戏剧叙事策略-洞察及研究
- 江西服装学院《管理经济学》2023-2024学年第二学期期末试卷
- 2023-2024学年河北省唐山市路南区数学五年级第二学期期末监测试题含解析
- 酒店物品艺术赏析智慧树知到期末考试答案章节答案2024年青岛酒店管理职业技术学院
- (高清版)JTGT 3310-2019 公路工程混凝土结构耐久性设计规范
- 探案识证学诊断 知到智慧树网课答案
- (正式版)JTT 1497-2024 公路桥梁塔柱施工平台及通道安全技术要求
- MOOC 园林植物遗传育种学-北京林业大学 中国大学慕课答案
- 抖音种草方案
- 2022AHA-ACC-HFSA心衰管理指南解读
- 《小石潭记》教学实录及反思特级教师-王君
- 水泥混凝土道路耐久性提升技术
- 公交驾驶员培训课件
评论
0/150
提交评论