四川省简阳市镇金区、简城区2023年数学八下期末学业质量监测试题含解析_第1页
四川省简阳市镇金区、简城区2023年数学八下期末学业质量监测试题含解析_第2页
四川省简阳市镇金区、简城区2023年数学八下期末学业质量监测试题含解析_第3页
四川省简阳市镇金区、简城区2023年数学八下期末学业质量监测试题含解析_第4页
四川省简阳市镇金区、简城区2023年数学八下期末学业质量监测试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.去年某市7月1日到7日的每一天最高气温变化如折线图所示,则关于这组数据的描述正确的是()A.最低温度是32℃ B.众数是35℃ C.中位数是34℃ D.平均数是33℃2.在直角坐标系中,点关于原点对称的点的坐标是(

)A. B. C. D.3.有一人患了流感,经过两轮传染后共有100人患了流感,那么每轮传染中,平均一个人传染的人数()A.8人 B.9人 C.10人 D.11人4.已知是方程组的解,则a+b的值为()A.2 B.-2 C.4 D.-45.若式子有意义,则一次函数的图象可能是()A. B. C. D.6.在菱形ABCD中,对角线AC、BD相交于点O,AC=8,BD=6,则菱形ABCD的周长是()A.20 B.40 C.24 D.487.下列各组数为勾股数的是()A.1,1, B.4,5,6 C.8,9,10 D.5,12,138.下列结论中,矩形具有而菱形不一定具有的性质是()A.内角和为360° B.对角线互相平分 C.对角线相等 D.对角线互相垂直9.将方程x2+4x+1=0配方后,原方程变形为()A.(x+2)2=3 B.(x+4)2=3 C.(x+2)2=﹣3 D.(x+2)2=﹣510.在平面直角坐标系中,作点A(3,4)关于x轴对称的点A′,再将点A′向左平移6个单位,得到点B,则点B的坐标为()A.(4,-3) B.(-4,3) C.(-3,4) D.(-3,-4)11.下列说法正确的是().A.的平方根是 B.是81的一个平方根C.0.2是0.4的算术平方根 D.负数没有立方根12.如图,一次函数的图象与轴的交点坐标为,则下列说法正确的有()①随的增大而减小;②;③关于的方程的解为;④当时,.A.1个 B.2个 C.3个 D.4个二、填空题(每题4分,共24分)13.如图,△ABC是等腰直角三角形,∠A=90°,点P.Q分別是AB、AC上的动点,且满足BP=AQ,D是BC的中点,当点P运动到___时,四边形APDQ是正方形.14.用一块长80cm,宽60cm的纸板,在四个角截去四个相同的小正方形,然后做成一个底面积为1500cm2的无盖长方体纸盒,则截去的小正方形的边长为___________.15.在矩形ABCD中,AB=2,BC=6,直线EF经过对角线BD的中点O,分别交边AD,BC于点E,F,点G,H分别是OB,OD的中点,当四边形EGFH为矩形时,则BF的长_________________.16.已知,,则的值为__________.17.已知四边形是矩形,点是边的中点,以直线为对称轴将翻折至,联结,那么图中与相等的角的个数为_____________18.如图中的数字都是按一定规律排列的,其中x的值是________.三、解答题(共78分)19.(8分)小明为了解政府调整水价方案的社会反响,随机访问了自己居住小区的部分居民,就“每月每户的用水量”和“调价对用水行为改变”两个问题进行调查,并把调查结果整理成下面的图1、图2.小明发现每月每户的用水量为5-35之间,有8户居民对用水价格调价涨幅抱无所谓,不会考虑用水方式的改变.根据小明绘制的图表和发现的信息,完成下列问题:(1),小明调查了户居民,并补全图1;(2)每月每户用水量的中位数和众数分别落在什么范围?(3)如果小明所在小区有1800户居民,请你估计“视调价涨幅采取相应的用水方式改变”的居民户数有多少?20.(8分)如图,一次函数y=-3x+6的图象与轴、轴分别交于、两点.(1)将直线向左平移1个单位长度,求平移后直线的函数关系式;(2)求出平移过程中,直线在第一象限扫过的图形的面积.21.(8分)已知y是x的函数,自变量x的取值范围是,下表是y与x的几组对应值.小华根据学习函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的图象与性质进行了探究.下面是小华的探究过程,请将其补充完整:(1)如图,在平面直角坐标系xOy中,描出了以上表中各组对应值为坐标的点.根据描出的点,画出该函数的图象.(2)根据画出的函数图象,写出:①时,对应的函数值y约为(结果精确到0.01);②该函数的一条性质:.22.(10分)如图,正方形的边长为6,菱形的三个顶点,,分别在正方形的边,,上,且,连接.(1)当时,求证:菱形为正方形;(2)设,试用含的代数式表示的面积.23.(10分)(1)计算:;(2)已知x=2−,求(7+4)x2+(2+)x+的值24.(10分)如图,直线与直线,两直线与轴的交点分别为、.(1)求两直线交点的坐标;(2)求的面积.25.(12分)某校九年级两个班,各选派10名学生参加学校举行的“汉字听写”大赛预赛,各参赛选手的成绩如下:九(1)班:88,91,92,93,93,93,94,98,98,100;九(2)班:89,93,93,93,95,96,96,98,98,1.通过整理,得到数据分析表如下:班级最高分平均分中位数众数方差九(1)班100m939312九(2)班195np8.4(1)直接写出表中m、n、p的值为:m=______,n=______,p=______;(2)依据数据分析表,有人说:“最高分在(1)班,(1)班的成绩比(2)班好.”但也有人说(2)班的成绩要好.请给出两条支持九(2)班成绩更好的理由;(3)学校确定了一个标准成绩,等于或大于这个成绩的学生被评定为“优秀”等级,如果九(2)班有一半的学生能够达到“优秀”等级,你认为标准成绩应定为______分,请简要说明理由.26.如图1,已知四边形ABCD是正方形,对角线AC、BD相交于点E,以点E为顶点作正方形EFGH.(1)如图1,点A、D分别在EH和EF上,连接BH、AF,直接写出BH和AF的数量关系;(2)将正方形EFGH绕点E顺时针方向旋转.①如图2,判断BH和AF的数量关系,并说明理由;②如果四边形ABDH是平行四边形,请在备用图中补全图形;如果四方形ABCD的边长为,求正方形EFGH的边长.

参考答案一、选择题(每题4分,共48分)1、D【解析】分析:将数据从小到大排列,由中位数及众数、平均数的定义,可得出答案.详解:由折线统计图知这7天的气温从低到高排列为:31、32、33、33、33、34、35,所以最低气温为31℃,众数为33℃,中位数为33℃,平均数是=33℃.故选D.点睛:本题考查了众数、中位数的知识,解答本题的关键是由折线统计图得到最高气温的7个数据.2、D【解析】

根据关于原点对称,横纵坐标都互为相反数,进行计算即可.【详解】解:(2,1)关于原点的对称点坐标为(﹣2,﹣1),故选:D.【点睛】本题考查关于原点对称,掌握关于原点对称,横纵坐标都互为相反数是解题的关键.3、B【解析】试题分析:设每轮传染中平均一个人传染的人数为x人,第一轮过后有(1+x)个人感染,第二轮过后有(1+x)+x(1+x)个人感染,那么由题意可知1+x+x(1+x)=100,整理得,,解得x=9或-11,x=-11不符合题意,舍去.那么每轮传染中平均一个人传染的人数为9人.故选B.考点:一元二次方程的应用.4、B【解析】

∵是方程组的解∴将代入①,得a+2=−1,∴a=−3.把代入②,得2−2b=0,∴b=1.∴a+b=−3+1=−2.故选B.5、A【解析】试题分析:当时,式子有意义,所以k>1,所以1-k<0,所以一次函数的图象过第一三四象限,故选A.考点:1.代数式有意义的条件;2.一次函数图像的性质.6、A【解析】

根据菱形对角线互相垂直平分的性质,可以求得BO=OD,AO=OC,在Rt△AOB中,根据勾股定理可以求得AB的长,即可求菱形ABCD的周长.【详解】四边形ABCD是菱形,∴AB=BC=CD=AD,BO=OD=3,AO=OC=4,AC⊥BD,∴AB==5,故菱形的周长为4×5=20.故选A.【点睛】此题考查菱形的性质,解题关键在于利用勾股定理进行计算.7、D【解析】分析:根据勾股数组的定义:满足a2+b2=c2的三个正整数叫做勾股数,逐项分析即可.详解:A.∵不是正整数,故1,1,不是勾股数;B.∵42+52≠62,故4,5,6不是勾股数;C.∵82+92≠102,故8,9,10不是勾股数;D.∵52+122=132,故5,12,13是勾股数;故选D.点睛:本题考查了勾股数的识别,解答本题的关键是熟练掌握勾股数的定义.8、C【解析】

矩形与菱形相比,菱形的四条边相等、对角线互相垂直;矩形四个角是直角,对角线相等,由此结合选项即可得出答案.【详解】A、菱形、矩形的内角和都为360°,故本选项错误;B、对角互相平分,菱形、矩形都具有,故本选项错误;C、对角线相等菱形不具有,而矩形具有,故本选项正确D、对角线互相垂直,菱形具有而矩形不具有,故本选项错误,故选C.【点睛】本题考查了菱形的性质及矩形的性质,熟练掌握矩形的性质与菱形的性质是解题的关键.9、A【解析】

配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.【详解】∵x2+4x+1=0,∴x2+4x=−1,∴x2+4x+4=−1+4,∴(x+2)2=3.故选:A.【点睛】此题考查解一元二次方程-配方法,掌握运算法则是解题关键10、D【解析】

根据直角坐标系坐标特点及平移性质即可求解.【详解】点A(3,4)关于x轴对称的点A′坐标为(3,-4)再将点A′向左平移6个单位得到点B为(-3,-4)故选D.【点睛】此题主要考查直角坐标系的坐标变换,解题的关键是熟知直角坐标系的特点.11、B【解析】

依据平方根、算术平方根、立方根的性质解答即可.【详解】A.的平方根是±,故A错误,;B.−9是81的一个平方根,故B正确,;C.0.04的算术平方根是0.2,故C错误,;D.负数有立方根,故D错误.故选:B.【点睛】此题考查平方根,算术平方根,立方根,解题关键在于掌握运算法则.12、B【解析】

根据一次函数的性质,一次函数与一元一次方程的关系对各个小项分析判断即可得解.【详解】图象过第一、二、三象限,∴,,故①②错误;又∵图象与轴交于,∴的解为,③正确.当时,图象在轴上方,,故④正确.综上可得③④正确故选:B.【点睛】本题考查了一次函数与一元一次方程,利用一次函数的性质、一次函数与一元一次方程的关系是解题关键.二、填空题(每题4分,共24分)13、AB的中点.【解析】

若四边形APDQ是正方形,则DP⊥AP,得到P点是AB的中点.【详解】当P点运动到AB的中点时,四边形APDQ是正方形;理由如下:∵∠BAC=90°,AB=AC,D为BC中点,∴AD⊥BC,AD=BD=DC,∠B=∠C=45°,∴△ABD是等腰直角三角形,当P为AB的中点时,DP⊥AB,即∠APD=90°,又∵∠A=90°,∠PDQ=90°,∴四边形APDQ为矩形,又∵DP=AP=AB,∴矩形APDQ为正方形,故答案为AB的中点.【点睛】此题考查正方形的判定,等腰直角三角形,解题关键在于证明△ABD是等腰直角三角形14、1cm【解析】

根据题意,将纸板的四个角截去四个相同的小正方形后,得到一个底面积为100的无盖长方体纸盒,设截去的小正方形的边长为,根据底面的面积公式,列一元二次方程求解即可.【详解】解:设截去的小正方形的边长为,由题意得,,整理得,解得.当时,<0,<0,不符合题意,应舍去;当时,>0,>0,符合题意,所以=1.故截去的小正方形的边长为1cm.故答案为:1cm【点睛】本题考查一元二次方程的应用,根据题意将无盖长方体纸盒的底面面积表示出来,列关于x的一元二次方程求解即可.15、6+6【解析】

根据矩形ABCD中,AB=2,BC=6,可求出对角线的长,再由点G、H分别是OB、OD的中点,可得GH=12【详解】解:如图:过点E作EM⊥BC,垂直为M,

矩形ABCD中,AB=2,BC=6,

∴AB=EM=CD=2,AD=BC=6,∠A=90°,OB=OD,

在Rt△ABD中,BD=22+62=210,

又∵点G、H分别是OB、OD的中点,

∴GH=12BD=10,

当四边形EGFH为矩形时,GH=EF=10,

在Rt△EMF中,FM=(10)2-22=6,

易证△BOF≌△DOE

(AAS),

∴BF=DE,

∴AE=FC,

设BF=x,则FC=6-x,由题意得:x-(6-x)=6,或(6-x)-x=6,,

∴x=【点睛】考查矩形的性质、直角三角形的性质,勾股定理等知识,合理的作辅助线,将问题转化显得尤为重要,但是,分情况讨论容易受图形的影响而被忽略,应切实注意.16、【解析】

由,,计算可得a+b=4,ab=1,再把因式分解可得ab(a+b),整体代入求值即可.【详解】∵,,∴a+b=4,ab=1∴=ab(a+b)=4.故答案为:4.【点睛】本题考查了因式分解的应用,正确把进行因式分解是解决问题的关键.17、4【解析】

由折叠的性质和等腰三角形的性质可得,∠EDF=∠EFD=∠BEF=∠AEB,由平行线的性质,可得∠AEB=∠CBE,进而得出结论.【详解】由折叠知,∠BEF=∠AEB,AE=FE,∵点E是AD中点,∴AE=DE,∴ED=FE,∴∠FDE=∠EFD,∵∠AEF=∠EDF+∠DFE=∠AEB=∠BEF∴∠AEB=∠EDF,∵AD∥BC,∴∠AEB=∠CBE,∴∠EDF=∠EFD=∠BEF=∠AEB=∠CBE,故答案为:4【点睛】本题属于折叠问题,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.解决问题的关键是由等腰三角形的性质得出∠EDF=∠AEB.18、1【解析】

根据已知图形得出m+1=n且m+n=19,求得m、n的值,再根据x=19n-m可得答案.【详解】解:由题意知,m+1=n且m+n=19,∴m=9,n=10,∴x=19×10-9=1,故答案为:1.【点睛】本题主要考查图形及数的变化规律,解题的关键是通过观察图形分析总结出规律,再按规律求解.三、解答题(共78分)19、(1)210,96,见解析;(2)中位数落在15m3−20m3之间,众数落在10m3−15m3之间;(3)1050户.【解析】

(1)首先根据圆周角等于360°,求出n的值是多少即可;然后用“对水价格调价涨幅抱无所谓态度”的居民的户数除以它所占的百分比,求出小明调查了多少户居民;最后计算用水量在15m3−20m3之间的居民的户数,补全图1即可.(2)根据中位数和众数的含义分别进行解答即可.(3)用小明所在小区居民的户数乘以样本中“视调价涨幅采取相应的用水方式改变”的居民户数占被调查的居民户数的百分比即可.【详解】解:(1)n=360−30−120=210,∵8÷=96(户)∴小明调查了96户居民.用水量在15m3−20m3之间的居民的户数是:96−(15+22+18+16+5)=20(户).补全图1如下:(2)∵96÷2=48(户),15+22=37(户),15+22+20=57(户),∴每月每户的用水量在5m3−15m3之间的有37户,每月每户的用水量在5m3−20m3之间的有57户,∴把每月每户用水量这组数据从小到大排列后,第48个、第49个数在15m3−20m3之间,∴第48个、第49个数的平均数也在15m3−20m3之间,∴每月每户用水量的中位数落在15m3−20m3之间;∵在这组数据中,10m3−15m3之间的数据出现了22次,出现的次数最多,∴每月每户用水量的众数落在10m3−15m3之间;(3)1800×=1050(户),答:“视调价涨幅采取相应的用水方式改变”的居民户数有1050户.【点睛】此题主要考查了条形统计图和扇形统计图、众数、中位数以及用样本估计总体,要善于从统计图中获取信息,并能利用获取的信息解决实际问题.20、(1)y=-3x+3;(1).【解析】

(1)根据平移的性质“左加右减”,将x换成x+1整理后即可得出结论;

(1)根据三角形的面积公式直接求出扫过的面积即可得出结论.【详解】(1)根据平移规律可得平移后的直线的解析式为:y=-3(x+1)+6=-3x-3+6=-3x+3;(1)对于一次函数y=-3x+6,当x=0时,y=6,所以B(0,6),令y=0,即-3x+6=0,解得x=1.所以A(1,0)同理可得直线y=-3x+3与x轴的交点C(1,0),与y轴的交点D(0,3)因此直线AB在第一象限扫过的图形的面积为:S=OA×OB-OC×OD=×1×6-×1×3=.【点睛】本题考查一次函数图象的几何变换以及三角形的面积公式,解题的关键是熟记平移的性质“上加下减,左加右减”,求直线平移后的解析式时要注意平移时k的值不变,只有b发生变化.21、(1)见解析;(2)①-2.01(答案不唯一);②y随x的增大而增大(答案不唯一)【解析】

(1)将各点顺次连线即可得到函数的图象;(2)①根据函数图象读取函数值即可;②可从函数的增减性的角度回答.【详解】(1)如图,(2)根据函数图象得:①当x=-2.5时,y的值约为-2.01(答案不唯一),故答案为:-2.01(答案不唯一);②当x<0时y随x的增大而增大(答案不唯一),故答案为:y随x的增大而增大(答案不唯一).【点睛】此题考查函数的图象,函数值,函数自变量的取值范围,根据描点法画出函数图象是解题的关键.22、(1)见解析;(2).【解析】

(1)根据已知条件可证明,再通过等量代换即可得出,继而证明结论;(2)过点作,交的延长线于点,连接,再证明,得出,进而可求得答案.【详解】解:(1)∵四边形是正方形,∴,∵四边形是菱形,∴.∵,∴∴,∴∴,∴菱形为正方形.(2)如图,过点作,交的延长线于点,连接,∵,∴,∵,∴∴在和中,∴∴∵,∴∴【点睛】本题考查了正方形的性质、菱形的判定及性质、勾股定理,会利用数形结合的思想解题,能够正确的作出辅助项是解此题的关键.23、(1)9-2;(2)2+【解析】

(1)根据二次根式的运算法则即可求出答案.(2)根据完全平方公式进行化简,然后将x的值代入即可求出答案.【详解】(1)原式=6+3−2+1−1=9-2(2)原式=(+2)2x2+(2+)x+=(+2)2(2-)2+(2+)(2-)+=(4-3)2+4-3+=1+1+=2+【点睛】本题考查学生的运算能力,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.24、(1)A(1,0),B(3,0);(2)1【解析】分析:(1)通过解方程组组可得到C点坐标;(2)先确定A点和B点坐标,然后根据三角形面积公式求解.详解:(1)由得∴.(2)在中,当时,∴在中,当时,∴∴∴.点睛:本题考查了两直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.25、(1)94,92.2,93;(2)见解析;(3)92.2.【解析】

(1)求出九(1)班的平均分确定出m的值,求出九(2)班的中位数确定出n的值,求出九(2)班的众数确定出p的值即可;(2)分别从平均分,方差,以及中位数方面考虑,写出支持九(2)班成绩好的原因;(3)用中位数作为一个标准即可衡量是否有一半学生达到优秀等级.【详解】解:(1)九(1)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论