




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.若腰三角形的周长是,则能反映这个等腰三角形的腰长(单位:)与底边长(单位:)之间的函数关系式的图象是()A. B.C. D.2.某同学在研究传统文化“抖空竹”时有一个发现:他把它抽象成数学问题,如图所示:已知,,,则的度数是()A. B. C. D.3.不等式3x<﹣6的解集是()A.x>﹣2 B.x<﹣2 C.x≥﹣2 D.x≤﹣24.如图,矩形ABCD中,对角线AC=8cm,△AOB是等边三角形,则AD的长为()cm.A.4 B.6 C.4 D.35.如图,正方形ABCD的边长为2,对角线AC,BD交于点O,E是AC延长线上一点,且CE=CO.则BE的长度为()A.3 B.102 C.5 D.6.关于x的一元二次方程2x2+4x﹣c=0有两个不相等的实数根,则实数c可能的取值为()A.﹣5 B.﹣2 C.0 D.﹣87.如图,菱形中,点、分别是、的中点,若,,则的长为()A. B. C. D.8.如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=6,DE=3,则△BCE的面积等于()A.10 B.9 C.8 D.69.若点P到△ABC的三个顶点的距离相等,则点P是△ABC()A.三条高的交点 B.三条角平分线的交点C.三边的垂直平分线的交点 D.三条中线的交点10.如图,图象(折线OEFPMN)描述了某汽车在行驶过程中速度与时间的函数关系,下列说法中错误的是()A.第3分时汽车的速度是40千米/时B.第12分时汽车的速度是0千米/时C.从第3分到第6分,汽车行驶了120千米D.从第9分到第12分,汽车的速度从60千米/时减少到0千米/时二、填空题(每小题3分,共24分)11.某市出租车的收费标准如下:起步价5元,即千米以内(含千米)收费元,超过千米的部分,每千米收费元.(不足千米按千米计算)求车费(元)与行程(千米)的关系式________.12.若反比例函数y=(2k-1)的图象在二、四象限,则k=________.13.关于的方程是一元二次方程,那么的取值范围是_______.14.如图,在平面直角坐标系中,A(4,0),B(0,3),以点A为圆心,AB长为半径画弧,交x轴的负半轴于点C,则点C坐标为______.15.如果一个平行四边形一个内角的平分线分它的一边为1∶2的两部分,那么称这样的平行四边形为“协调平行四边形”,称该边为“协调边”.当“协调边”为3时,这个平行四边形的周长为_________.16.如图,已知△ABC中,AB=AC,AD平分∠BAC,E是AB的中点,若AC=6,则DE的长为_____________17.小天家、小亮家、学校依次在同一条笔直的公路旁(各自到公路的距离忽略不计),每天早上7点整小天都会从家出发以每分钟60米的速度走到距他家600米的小亮家,然后两人以小天同样的速度准时在7:30到校早读.某日早上7点过,小亮在家等小天的时候突然想起今天轮到自己值日扫地了,所以就以每分钟60米的速度先向学校走去,后面打算再和小天解释,小天来到小亮家一看小亮不在家,立刻想到小亮今天是值日生(停留及思考时间忽略不计),于是他就以每分钟100米的速度去追小亮,两人之间的距离y(米)及小亮出发的时间x(分)之间的函数关系如下图所示.请问当小天追上小亮时离学校还有_____米.18.如图,在中,D是AB上任意一点,E是BC的中点,过C作,交DE的延长线于F,连BF,CD,若,,,则_________.三、解答题(共66分)19.(10分)省射击队为从甲、乙两名运动员中选拔一人参加全国比赛,对他们进行了六次测试,测试成绩如下表(单位:环):
第一次
第二次
第三次
第四次
第五次
第六次
甲
10
8
9
8
10
9
乙
10
7
10
10
9
8
(1)根据表格中的数据,计算出甲的平均成绩是环,乙的平均成绩是环;(2)分别计算甲、乙六次测试成绩的方差;(3)根据(1)、(2)计算的结果,你认为推荐谁参加全国比赛更合适,请说明理由.(计算方差的公式:s2=[])20.(6分)若m,n,p满足m-n=8,mn+p2+16=0,求m+n+p的值?21.(6分)为了给游客提供更好的服务,某景区随机对部分游客进行了关于“景区服务工作满意度”的调查,并根据调查结果绘制成如下不完整的统计图表.满意度人数所占百分比非常满意1210%满意54m比较满意n40%不满意65%根据图表信息,解答下列问题:(1)本次调查的总人数为______,表中m的值为_______;(2)请补全条形统计图;(3)据统计,该景区平均每天接待游客约3600人,若将“非常满意”和“满意”作为游客对景区服务工作的肯定,请你估计该景区服务工作平均每天得到多少名游客的肯定.22.(8分)先化简,再求值:),其中.23.(8分)某校在一次大课间活动中,采用了四种活动形式:A:跑步;B:跳绳;C:做操;D:游戏,全校学生都选择了一种形式参与活动,小明对同学们选择的活动形式进行了随机抽样调查,并绘制了不完整的两幅统计图,结合统计图,回答下列问题:(1)本次调查学生共人,并将条形图补充完整;(2)如果该校有学生2000人,请你估计该校选择“跑步”这种活动的学生约有多少人?(3)学校在每班A、B、C、D四种活动形式中,随机抽取两种开展活动,求每班抽取的两种形式恰好是“做操”和“跳绳”的概率.24.(8分)如图,直线与轴交于点,与轴交于点;直线与轴交于点,与直线交于点,且点的纵坐标为4.(1)不等式的解集是;(2)求直线的解析式及的面积;(3)点在坐标平面内,若以、、、为顶点的四边形是平行四边形,求符合条件的所有点的坐标.25.(10分)在平面直角坐标系xOy中,边长为5的正方形ABCD的对角线AC、BD相交于点P,顶点A在x轴正半轴上运动,顶点B在y轴正半轴上运动(x轴的正半轴、y轴的正半轴都不包含原点O),顶点C.D都在第一象限。(1)当点A坐标为(4,0)时,求点D的坐标;(2)求证:OP平分∠AOB;(3)直接写出OP长的取值范围(不要证明).26.(10分)如图,在正方形ABCD中,P是CD边上一点,DF⊥AP,BE⊥AP.求证:AE=DF.
参考答案一、选择题(每小题3分,共30分)1、D【解析】
根据三角形的周长列式并整理得到y与x的函数关系式,再根据三角形的任意两边之和大于第三边,任意两边之和大于第三边列式求出x的取值范围,即可得解.【详解】解:根据题意,x+2y=10,所以,,
根据三角形的三边关系,x>y-y=0,x<y+y=2y,所以,x+x<10,解得x<5,所以,y与x的函数关系式为(0<x<5),纵观各选项,只有D选项符合.故选D.【点睛】本题主要考查的是三角形的三边关系,等腰三角形的性质,求出y与x的函数关系式是解答本题的关键.2、B【解析】
延长交于,依据,,可得,再根据三角形外角性质,即可得到.【详解】解:如图,延长交于,,,,又,,故选:.【点睛】本题主要考查了平行线的性质,解决问题的关键是掌握:两直线平行,同位角相等.3、B【解析】
根据不等式的性质在不等式的两边同时除以3即可求出x的取值范围.【详解】在不等式的两边同时除以3得:x<-1.
故选:B.【点睛】本题考查了解简单不等式的能力,解不等式依据的是不等式的基本性质:
(1)不等式的两边同时加上(或减去)同一个数(或整式),不等号的方向不变;
(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;
(3)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.4、C【解析】
先求得∠ACB=30°,再求出AB=4cm,由勾股定理求得AD的长.【详解】∵△AOB是等边三角形,∴∠BAC=60°,∴∠ACB=30°,∵AC=8cm,∴AB=4cm,在Rt△ABC中,cm,∵AD=BC,∴AD的长为4cm.故选:C.【点睛】本题考查的是矩形的性质,关键是根据在直角三角形中,30°的锐角所对的直角边等于斜边的一半;以及勾股定理解答.5、C【解析】
利用正方形的性质得到OB=OC=22BC=1,OB⊥OC,则OE=2,然后根据勾股定理计算BE【详解】∵正方形ABCD的边长为2,∴OB=OC=22BC=22×2=1,OB⊥∵CE=OC,∴OE=2,在Rt△OBE中,BE=12故选C.【点睛】本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;正方形具有四边形、平行四边形、矩形、菱形的一切性质.6、C【解析】
利用一元二次方程根的判别式(△=b2﹣4ac)可以判断方程的根的情况,有两个不相等的实根,即△>1.【详解】解:依题意,关于x的一元二次方程,有两个不相等的实数根,即△=b2﹣4ac=42+8c>1,得c>﹣2根据选项,只有C选项符合,故选:C.【点睛】本题考查一元二次方程的根的判别式,利用一元二次方程根的判别式(△=b2-4ac)可以判断方程的根的情况:一元二次方程的根与根的判别式有如下关系:①当△>1时,方程有两个不相等的实数根;②当△=1时,方程有两个相等的实数根;③当△<1
时,方程无实数根,但有2个共轭复根.上述结论反过来也成立.7、A【解析】
由菱形的性质可得AC⊥BD,AO=CO=3,BO=DO,由勾股定理可求BO=4,可得BD=8,由三角形中位线定理可求EF的长【详解】解:如图,连接BD,交AC于点O,∵四边形ABCD是菱形,∴AC⊥BD,AO=CO=3,BO=DO,∴,∴BD=2BO=8,∵点E、F分别是AB、AD的中点,∴EF=BD=4,故选:A.【点睛】本题考查了菱形的性质,三角形中位线定理,本题中根据勾股定理求OB的值是解题的关键.8、B【解析】
作EF⊥BC于F,根据角平分线的性质可知EF=DE=3,即可求出△BCE的面积.【详解】作EF⊥BC于F,∵BE平分∠ABC,ED⊥AB,EF⊥BC,∴EF=DE=3,∴△BCE的面积=×BC×EF=9,故选B.【点睛】本题考查了角平分线的性质,熟练掌握角平分线的性质:角平分线上的点到角两边的距离相等是解答本题的关键.9、C【解析】
根据线段垂直平分线上的点到两端点的距离相等进行解答.【详解】解:垂直平分线上任意一点,到线段两端点的距离相等,到三角形三个顶点的距离相等的点是三角形三边垂直平分线的交点.故选:C.【点睛】本题考查的是线段垂直平分线的性质,熟知垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.10、C【解析】
横轴表示时间,纵轴表示速度.当第3分的时候,对应的速度是40千米/时,A对;第12分的时候,对应的速度是0千米/时,B对;从第3分到第6分,汽车的速度保持40千米/时,行驶的路程为40×360=2千米,C从第9分到第12分,汽车对应的速度分别是60千米/时,0千米/时,所以汽车的速度从60千米/时减少到0千米/时,D对.综上可得:错误的是C.故选C.二、填空题(每小题3分,共24分)11、【解析】
本题是一道分段函数,当和是由收费与路程之间的关系就可以求出结论.【详解】由题意,得
当时,
;
当时,
,∴,故答案为:.【点睛】本题考查了分段函数的运用,解答时求出函数的解析式是关键.12、1【解析】
根据反比例函数的定义,次数为-1次,再根据图象在二、四象限,2k-1<1,求解即可.【详解】解:根据题意,3k2-2k-1=-1,2k-1<1,
解得k=1或k=且k<,
∴k=1.
故答案为1.【点睛】本题利用反比例函数的定义和反比例函数图象的性质求解,需要熟练掌握并灵活运用.13、【解析】
根据一元二次方程的概念及一般形式:即可求出答案.【详解】解:∵关于的方程是一元二次方程,∴二次项系数,解得;故答案为.【点睛】本题考查一元二次方程的概念,比较简单,做题时熟记二次项系数不能等于0即可.14、(﹣1,0)【解析】
根据勾股定理求出AB的长,由AB=AC即可求出C点坐标.【详解】解:∵A(4,0),B(0,3),∴OA=4,OB=3,∴AB==5∴AC=5,∴点C的横坐标为:4-5=-1,纵坐标为:0,∴点C的坐标为(-1,0).故答案为(-1,0).【点睛】本题考查了勾股定理和坐标与图形性质的应用,解此题的关键是求出的长,注意:在直角三角形中,两直角边的平方和等于斜边的平方.15、8或1【解析】
解:如图所示:①当AE=1,DE=2时,∵四边形ABCD是平行四边形,∴BC=AD=3,AB=CD,AD∥BC,∴∠AEB=∠CBE,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠ABE=∠AEB,∴AB=AE=1,∴平行四边形ABCD的周长=2(AB+AD)=8;②当AE=2,DE=1时,同理得:AB=AE=2,∴平行四边形ABCD的周长=2(AB+AD)=1;故答案为8或1.16、3【解析】∵AB=AC,AD平分∠BAC,∴D是BC中点.∵E是AB的中点,∴DE是△ABC的中位线,.17、1【解析】
根据题意和函数图象中的数据可以求得当小天追上小亮时离学校还有多少千米,本题得以解决.【详解】解:设小天从到小亮家到追上小亮用的时间为a分钟,由题意可得,400+60a=100a,解得,a=10,即小天从到小亮家到追上小亮用的时间为10分钟,∵小天7:00从家出发,到学校7:30,∴小天从家到学校用的时间为:30分钟,∴当小天追上小亮时离学校还有:60×30﹣600﹣100×10=1(米),故答案为1.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.18、1【解析】
证明CF∥DB,CF=DB,可得四边形CDBF是平行四边形,作EM⊥DB于点M,解直角三角形即可.【详解】解:∵CF∥AB,
∴∠ECF=∠EBD.
∵E是BC中点,
∴CE=BE.
∵∠CEF=∠BED,
∴△CEF≌△BED(ASA).
∴CF=BD.
∴四边形CDBF是平行四边形.
作EM⊥DB于点M,
∵四边形CDBF是平行四边形,,
∴BE=,DF=2DE,
在Rt△EMB中,EM2+BM2=BE2且EM=BM
∴EM=1,在Rt△EMD中,
∵∠EDM=30°,
∴DE=2EM=2,
∴DF=2DE=1.
故答案为:1.【点睛】本题考查平行四边形的判定和性质、全等三角形的判定和性质、勾股定理、直角三角形30度角性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,三、解答题(共66分)19、解:(1)1;1.(2)s2甲=;s2乙=.(3)推荐甲参加比赛更合适.【解析】
解:(1)1;1.(2)s2甲===;s2乙===.(3)推荐甲参加全国比赛更合适,理由如下:两人的平均成绩相等,说明实力相当;但甲的六次测试成绩的方差比乙小,说明甲发挥较为稳定,故推荐甲参加比赛更合适.20、m+n+p=0.【解析】试题分析:把m,n,p看成是未知数,本题已知两个方程求三个未知数,因此可以采用主元法,将其中一个未知数看成常数,另外两个当作未知数进行解答,本题由m-n=8,可得:m=n+8,把m=n+8代入mn+p2+16=0,得n2+8n+16+p2=0,即(n+4)2+p2=0,根据非负数的非负性质可求出n=-4,p=0,所以m=4,因此m+n+p=4+(-4)+0=0.因为m-n=8,所以m=n+8.将m=n+8代入mn+p2+16=0中,得n(n+8)+p2+16=0,所以n2+8n+16+p2=0,即(n+4)2+p2=0.又因为(n+4)2≥0,p2≥0,所以,解得,所以m=n+8=4,所以m+n+p=4+(-4)+0=0.21、(1)120;45%;(2)补图见解析;(3)平均每天得到约1980人的肯定.【解析】
(1)非常满意的人数÷所占百分比计算即可得;用满意的人数÷总人数即可得m(2)计算出比较满意的n的值,然后补全条形图即可(3)每天接待的游客×(非常满意+满意)的百分比即可【详解】(1)12÷10%=120;54÷120×100%=45%(2)比较满意:120×40%=48(人);补全条形统计图如图.(3)3600×(45%+10%)=1980(人).答:该景区服务工作平均每天得到约1980人的肯定.【点睛】统计图有关的计算是本题的考点,熟练掌握其特点并正确计算是解题的关键.22、,.【解析】试题分析:先通分,然后进行四则运算,最后将a的值代入计算即可.试题解析:原式===,当时,原式===.考点:分式的化简求值.23、(1)300;(2)选择“跑步”这种活动的学生约有800人;(3)【解析】
(1)用A类的人数除以它所占的百分比得到调查的总人数,再用总人数减去其它项目的人数,求出跳绳的人数,从而补全统计图;(2)用该校的总人数乘以“跑步”的人数所占的百分比即可;(3)画树状图展示所有12种等可能的结果数,找出每班抽取的两种形式恰好是“做操”和“跳绳”的结果数,然后利用概率公式求解.【详解】(1)根据题意得:120÷40%=300(人),所以本次共调查了300名学生;跳绳的有300﹣120﹣60﹣90=30人,补图如下:故答案为:300;(2)根据题意得:2000×40%=800(人),答:选择“跑步”这种活动的学生约有800人;(3)画树状图为:共有12种等可能的结果数,其中每班抽取的两种形式恰好是“做操”和“跳绳”的结果数为2,所以每班抽取的两种形式恰好是“做操”和“跳绳”的概率==.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.24、(1);(2)的面积为2;(3)符合条件的点共有3个:,,【解析】
(1)直线l1交于点D,且点D的纵坐标为4,则4=2x+2,解得:x=1,故点D(1,4),即可求解;(2)将点B、D的坐标代入y=kx+b,即可求解;(3)分AB是平行四边形的一条边、AB是平行四边形的对角线两种情况,分别求解.【详解】(1)把代入得:当时,不等式的解集是(2)把、代入得:直线的解析式是:令由知:的面积为2(3),,以、、、为顶点的四边形是平行四边形由平移可知:,,符合条件的点共有3个:,,【点睛】本题为一次函数综合运用题,涉及到平行四边形的基本性质、求解不等式等知识点,其中(3),要注意分类求解,避免遗漏.25、(1)D(7,4);(2)见解析;(3)<OP⩽5.【解析】
(1)作DM⊥x轴于点M,由A(4,0)可以得出OA=4,由勾股定理就可以求出OB=3,再通过证明△AOB≌△DMA就可以求出AM=OB,DM=OA,从而求出点D的坐标.(2)过P点作x轴和y轴的垂线,可通过三角形全等,证明OP是角平分线.(3)因为OP在∠AOB的平分线上,就有∠POA=45°,就有OP=PE,在Rt△APE中运用三角函数就可以表示出PE的范围,从而可以求出OP的取值范围.【详解】(1)作DM⊥x轴于点M,∴∠AMD=90°.∵∠AOB=90°,∴∠AMD=∠AOB.∵四边形ABCD是正方形,∴AB=AD,∠BAD=90°,∴∠OAB+∠DAM=90∘.∵∠OAB+∠OBA=90°,∴∠DAM=∠OBA.在△DMA和△AOB中,,∴△DMA≌△AOB,∴AM=OB,DM=AO.∵A(4,0),∴OA=4,∵AB=5,在Rt△AOB中由勾股定理得:OB==3.∴AM=3,MD=4,∴OM=7.∴D(7,4);(2)证明:作PE⊥x轴交x轴于E点,作PF⊥y轴交y轴于F点∵∠BPE+∠E
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 丽水学院《国家经济调节法学》2023-2024学年第二学期期末试卷
- 四川省乐山市犍为县2025届初三4月中考模拟测试数学试题试卷含解析
- 2025年市场营销专业本科考试试卷及答案
- 天津市职业大学《临床流行病学与循环医学》2023-2024学年第一学期期末试卷
- 泉州工艺美术职业学院《中国古代文学Ⅰ》2023-2024学年第二学期期末试卷
- 天津市五校2025届高三下学期期末考试语文试题高三期末试题含解析
- 江苏省南京师大附中2024-2025学年高三下学期高考适应性练习(一)英语试题试卷含解析
- 山东省曹县三桐中学2025届第二学期高三期末统一考试数学试题含解析
- 西藏自治区林芝市2024-2025学年高三下期第二次周考数学试题含解析
- 电子政务系统安全等级保护评估合同
- (完整版)铝合金门窗施工合同范本
- 大单元教学设计 统编版四年级下册道德与法治 第四单元备课教案
- 2024年人教版小升初数学升学考试模拟试卷合集(共5套)(含答案解析)【可编辑打印】
- 浪潮新型园区交换网络方案
- 2024年国家电投集团海南分公司招聘笔试参考题库含答案解析
- 押运员管理考核规定模版
- 量子计算技术的发展前景
- 人文关怀护理课件胃镜室
- 中医类诊所规章制度与岗位职责
- 新能源电站应用系统基础知识培训
- 骨质疏松症的护理课件
评论
0/150
提交评论