北非可再生能源规划与展望-Planning and prospects for renewable power NORTH AFRICA_第1页
北非可再生能源规划与展望-Planning and prospects for renewable power NORTH AFRICA_第2页
北非可再生能源规划与展望-Planning and prospects for renewable power NORTH AFRICA_第3页
北非可再生能源规划与展望-Planning and prospects for renewable power NORTH AFRICA_第4页
北非可再生能源规划与展望-Planning and prospects for renewable power NORTH AFRICA_第5页
已阅读5页,还剩178页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Planningandprospectsforrenewablepower

NORTHAFRICA

©IRENA2023

Unlessotherwisestated,materialinthispublicationmaybefreelyused,shared,copied,reproduced,printedand/orstored,providedthatappropriateacknowledgementisgivenofIRENAasthesourceandcopyrightholder.Materialinthispublicationthatisattributedtothirdpartiesmaybesubjecttoseparatetermsofuseandrestrictions,andappropriatepermissionsfromthesethirdpartiesmayneedtobesecuredbeforeanyuseofsuchmaterial.

REPORTCITATION

IRENA(2023),Planningandprospectsforrenewablepower:NorthAfrica,InternationalRenewableEnergyAgency,

AbuDhabi.

ISBN:978-92-9260-485-1

ACKNOWLEDGEMENTS

ThisreportwasdraftedbySebastianHendrikSterl,PabloCarvajal,PaulineFulcheriandMohamedA.EltahirElabbasundertheguidanceofAsamiMiketa(IRENA)andDolfGielen(ex-IRENA),inclosecollaborationwithMohamedBassamBenTicha(consultant),whoconductedmajordevelopmentworkwithIRENAontheSystemPlanningTestmodelforNorthAfricaandprovidedmodellingsupport.ThereportalsoreceivedinputfromBilalHussain,DanielRusso,TommasoTiozzoBastianelloandFarmataDiallo(IRENA).

ValuablereviewandconsultationwereprovidedbyChokriZammali(SociétéTunisiennedel’ÉlectricitéetduGaz),NaimaChabouni(MinesParisTech),ArmanAghahosseini(LappeenrantaUniversityofTechnology),BobvanderZwaan(TNO),andIRENAcolleaguesHeribBlanco,LauraAl-Katiri,AhmedBadr,MirjamReiner,ImenGherboudj,MohammedSanusiNababa,RabiaFerroukhi,BinuParthan,GayathriNair,SimonBenmarraze,BarbaraJinks,PaulKomor,ZoheirHamediandReemKorban.

Forfurtherinformationortoprovidefeedback:

info@

.

Thisreportisavailablefordownload:

/publications

.

DISCLAIMER

Thispublicationandthematerialhereinareprovided“asis”.AllreasonableprecautionshavebeentakenbyIRENAtoverifythereliabilityofthematerialinthispublication.However,neitherIRENAnoranyofitsofficials,agentsorotherthird-partycontentprovidersprovidesawarrantyofanykind,eitherexpressedorimplied,andacceptnoresponsibilityorliabilityforanyconsequenceofuseofthepublicationormaterialherein.

TheinformationcontainedhereindoesnotnecessarilyrepresenttheviewsofallMembersofIRENA.ThementionofspecificcompaniesorcertainprojectsorproductsdoesnotimplythattheyareendorsedorrecommendedbyIRENAinpreferencetoothersofasimilarnaturethatarenotmentioned.ThedesignationsemployedandthepresentationofmaterialhereindonotimplytheexpressionofanyopiniononthepartofIRENAconcerningthelegalstatusofanyregion,country,territory,cityorareaorofitsauthorities,orconcerningthedelimitationoffrontiersorboundaries.

1

2

CONTENTS

ABBREVIATIONS 8

ABOUTTHISREPORT 9

KEYTAKEAWAYS 11

REGIONALOVERVIEWANDKEYDATA 13

1.1Contributionofthisreport 13

1.2NorthAfrica’senergysupplyishighlydependentonfossilfuels 13

1.3NorthAfricancountriesshowdivergingpatternsofelectricityinfinal

energydemand 15

1.4ElectricitydemandinNorthAfricaisstillgrowingstrongly,requiringsubstantial

powersectorinvestments 16

1.5MostNorthAfricancountrieshaveambitiousrenewableelectricitytargets 19

1.6SolarandwindpowerinNorthAfricaareexpandingandgettingcheaper 22

1.7EnhancedflexibilitypromotesintegrationofsolarandwindintoNorthAfrican

powersystems 25

SCENARIOSFORNORTHAFRICA’SELECTRICITYSYSTEMS 31

2.1SPLAT-NmodelscapacityexpansioninNorthAfrica 31

2.2FourscenariosforNorthAfrica’spowersectorweremodelled 36

2.3ThethreeTransitionscenariosdifferintheirassumptions 41

2.4Ifinvestmentinfossilfuelprojectsisdiscontinued,least-costcapacityexpansion

isdominatedbysolarandwindpower 45

2.5Batterystorageandhydrogenproductionareconducivetogreaterintegration

ofsolarPV,buttheylowertheneedforCSP 51

2.6WindpowerisanattractiveinvestmentinallNorthAfricancountries,especially

incombinationwithhydrogenproduction 53

2.7Batterystorageandhydrogenproductionlowertheneedforadditional

cross-borderinterconnectivity 54

2.8Theneedforbatterystorageincreaseswiththeshareofvariablerenewables

intheenergymix 65

2.9Greenhydrogenproduction,combinedwithvariablerenewablesandstorage,

couldbecomeanintegralpartofaninterconnectedelectricitysystem 69

2.10CSPstoragewillbeimportanttoensuresystemadequacy 75

2.11DeploymentofVREwithstoragesolutionscantempersystemcostsiffossilfuel

investmentsarehalted 77

2.12Holdingdownthelevelisedcostofelectricity 79

2.13TheproposedtransitiontowardsVREwouldsubstantiallylowerCO2emissions

frompowergeneration 81

2.14AdditionalstudiescouldshedmorelightontheNorthAfricanpowersystem 83

2.15Pathwaystolower-costelectricitygenerationinNorthAfrica 85

REFERENCES 86

FIGURES

Figure1‑1TotalprimaryenergysupplystructureinNorthAfrica,2019 14

Figure1‑2TotalfinalenergyconsumptioninNorthAfrica,1990-2019 15

Figure1‑3ElectrificationpathoftheenergysectorinNorthAfrica:electricityintensity

andnon-electricityenergyintensityinNorthAfricancountries,1990-2019 16

Figure1‑4InstalledcapacityandgenerationinNorthAfricain2015and2019 17

Figure1‑5EvolutionofenergysectorinvestmentsinNorthAfrica,2015-2020 18

Figure1‑6CommittedandplannedpowerinvestmentsinNorthAfrica,2021-2025 18

Figure1‑7ExistingandcommittedcapacityinNorthAfricabytechnology,comparedwith

projectedpeakload,2020-2040 19

Figure1‑8Renewableenergycapacityexpansionby2030accordingtoNDCsinNorthAfrica 21

Figure1‑9Shareofenergysourcesinelectricitygenerationin2019andmostambitious

targetsforrenewableenergy(includinghydropower)inNorthAfrica 22

Figure1‑10InstalledcapacityofsolarPVandCSPinNorthAfrica,2010-2020,andsharein

individualcountries,2020 23

Figure1‑11EvolutionoftheaverageinstallationcostsforsolarPVprojectsinNorthAfrica 24

Figure1‑12InstalledcapacityofonshorewindinNorthAfrica,2010-2020,andsharein

individualcountries,2020 24

Figure1.13EvolutionofaverageinstallationcostsforonshorewindprojectsinNorthAfrica 25

Figure1‑14ExistingandplannedinterconnectioncapacityinNorthAfrica 26

Figure2‑1NormalisedloadcurvesonanaveragedayineachseasoninNorthAfrica

(appliedforallyearsofthemodellingperiod) 39

Figure2‑2Examplesofdiurnalprofilesofsolarphotovoltaicpowergenerationforsitesin

Mauritania(UTC),Algeria(UTC+1)andEgypt(UTC+2) 44

Figure2‑3MonthlyaveragewindprofileofdifferentlocationsinEgyptandMorocco 44

Figure2‑4Identifiedsolarphotovoltaicandwindmodelsupplyregionsfromresource

screeninginNorthAfricawith8%and17%accountedlosses,respectively 45

Figure2‑5CapacityexpansioninNorthAfricabytechnologyinthefourscenarios 47

Figure2‑6ProjectionofgenerationinNorthAfricainthefourscenarios,bytechnology 49

Figure2‑7ShareofenergysourcesinelectricitygenerationinNorthAfricainthefour

scenarios,bytechnology 49

Figure2‑8Newinstalledsolarphotovoltaiccapacitybycountryinthefourscenarios 52

Figure2‑9Newinstalledconcentratedsolarpowercapacitybycountryinthefourscenarios 52

Figure2‑10Newinstalledwindcapacitybycountryinthefourscenarios 53

Figure2‑11Modelassumptions(constraints)onexchangepricesbetweenNorthAfrican

countriesandneighbouringregions 55

Figure2‑12Totalelectricitytradeflowsin2040inthefourscenarios 55

Figure2‑13GrossexportsandimportsofelectricityinNorthAfricancountriesinthefour

scenarios,2018and2040 56

Figure2‑14Morocco’simportsfromSpaininthePlannedscenario,2040 58

•4•PLANNINGANDPROSPECTSFORRENEWABLEPOWER

NORTHAFRICA•5•

Figure2‑15Morocco’simportsfromAlgeriainthePlannedscenario,2040 58

Figure2‑16Tunisia’simportsfromAlgeriainthePlannedscenario,2040 59

Figure2‑17Tunisia’simportsfromLibyainthePlannedscenario,2040 59

Figure2‑18Tunisia’simportsfromItalyinthePlannedscenario,2040 60

Figure2‑19Egypt’simportsfromLibyainthePlannedscenario,2040 60

Figure2‑20DailyprofilesofexportsintheTransitionscenario,2040 61

Figure2‑21DailyprofilesofexchangesintheTransition+Batteriesscenario,2040 62

Figure2‑22DailyprofilesofexchangesintheTransition+Batteries+H2scenario,2040 63

Figure2‑23ElectricityexchangesinNorthAfricainthefourscenarios,2040(GWh) 64

Figure2‑24TotalinstalledbatterycapacityintheTransition+BatteriesandtheTransition+

Batteries+H2scenarios 66

Figure2‑25Dailyuseprofileofbatteriesbyseasonandbycountry 67

Figure2‑26DailyuseofpumpedhydropowerinMoroccoinallscenarios 68

Figure2‑27Unitcostofhydrogengeneratedinscreenedwindandsolarphotovoltaicregions 71

Figure2‑28HydrogensupplycurveinNorthAfricaasdeterminedbythemodel,2030and2040 71

Figure2‑29Evolutionofhydrogenproduction,electrolysercapacityandgenerationfrom

variablerenewableenergyinNorthAfricaintheTransition+Batteries+

H2scenario,2025-2040 72

Figure2‑30SeasonalhydrogenproductionintheTransition+Batteries+H2scenario,

bycountryandnormalised(relativetomaximumdailyproductionintheyear) 73

Figure2‑31DailyhydrogenproductionrateintheTransition+Batteries+H2scenario,

bycountry 74

Figure2‑32DailyhydrogenproductionintheTransition+Batteries+H2scenarioforeach

season,bycountry 74

Figure2‑33ResidualloaddurationcurveintheTransitionscenario,bycountry,2040 76

Figure2‑34Hourlycapacityfactorofconcentratedsolarpowerneededtomeetdemand

intheTransitionscenario,2040 77

Figure2‑35Evolutionofsystemcostsinthefourscenarios 78

Figure2‑36TotalcostsandtotalgenerationinNorthAfricainthefourscenarios,2020-2040 79

Figure2‑37EvolutionoftotalgenerationcostinNorthAfricainthefourscenarios

(annualsystemcostdividedbyannualgeneration) 80

Figure2‑38Averagegenerationcostinthefourscenarios,bycountry,2040 80

Figure2‑39EvolutionofcarbondioxideemissionsfromtheelectricitysectorinNorthAfrica

inthefourscenarios 82

Figure2‑40Cumulativecarbondioxideemissionsandreductionsinthefourscenarios,

2020-2040 82

Figure2‑41Averagedifferencesbetweenthe1.5˚CScenarioandPlannedEnergyScenario

forAfrica,2021-2050 84

TABLES

Table1‑1Power-sector-relatedtargetsinNorthAfricaasreflectedinrecentnational

plansandNDCs 20

Table1‑2Hydrogenprojects,partnerships,co-operationagreementsandmemorandaof

understandinginNorthAfrica 28

Table2‑1DefinitionandmodellingofpowersysteminputsinSPLAT-N 32

Table2‑2PlannedandcommittedrenewableenergyprojectsinNorthAfrica 35

Table2‑3Assumptionsbehindthefourmodelledscenarios 37

Table2‑4Summaryofkeyresultsfromtheinvestigatedscenarios 40

Table2‑5SummaryoftheanalysisofthestepsneededtogofromthePlannedtothe

Transitionscenario 42

Table2‑6Country-levelbreakdownofthepowergenerationmixby2040,byscenario 50

Table2‑7SensitivityofscenarioresultstopricesofexportsfromEgypttooutside

NorthAfrica 57

Table2‑8ShareofpowerexchangesintotalelectricitydemandinNorthAfrica 64

Table2‑9ComparisonofhydrogenproductionintheTransition+Batteries+H2scenario

withnational,regionalandglobalhydrogendemandprojections,2030and2040 72

Table2‑10ComparisonofelectrolysercapacityintheTransition+Batteries+H2scenario

withnational,regionalandglobalhydrogenprojections,2030and2040 73

•6•PLANNINGANDPROSPECTSFORRENEWABLEPOWER

NORTHAFRICA•7•

BOXES

Box2-1Characterisationofdemandinthemodel 37

Box2-2Estimatingvariablerenewableenergygenerationprofiles 43

Box2-3Representationofstorageinthemodel 47

Box2-4AnexampleofIRENA’ssocio-economicanalysisofenergytransitionroadmaps 83

ABBREVIATIONS

CAPEX

capitalexpenditure

LNG

liquefiednaturalgas

CCC

consolidatedcontractor’scompany

MSR

modelsupplyregion

CCPP

combinedcyclepowerplant

Mt

megatonne

CF

capacityfactor

MW

megawatt

CMP

ContinentalMasterPlan

MWh

megawatthour

CO2

carbondioxide

NDC

NationallyDeterminedContributions

COMELEC

MaghrebElectricityCommittee

O&M

operationandmaintenance

CSP

concentratedsolarpower

ONEE

NationalOfficeofElectricityandWater(Morocco)

ct

cent

OPEX

operationalexpenditure

EEHC

EgyptianElectricityHolding

Company

PJ

petajoule

EHB

EuropeanHydrogenBackbone

PV

photovoltaic

EJ

exajoule

RE

renewableenergy

ENTSO-E

EuropeanNetworkofTransmissionSystemOperatorsforElectricity

ROR

run-of-river

SPLAT-N

SystemPlanningTestModelfor

EU

EuropeanUnion

NorthAfrica

GDP

grossdomesticproduct

TFEC

totalfinalenergyconsumption

GHG

greenhousegas

TWh

terawatthour

GW

gigawatt

UNFCCC

UnitedNationsFramework

ConventionforClimateChange

GWh

gigawatthour

UNSD

UnitedNationsStatisticsDivision

H

2

hydrogen(dihydrogen)

USD

UnitedStatesdollar

HFO

heavyfueloil

IEA

InternationalEnergyAgency

VRE

WACC

variablerenewableelectricityweightedaveragecostofcapital

IPP

independentpowerproducers

kW

kilowatt

•8•PLANNINGANDPROSPECTSFORRENEWABLEPOWER

NORTHAFRICA•9•

ABOUTTHISREPORT

ThisreportispartofIRENA’sseriesonplanningandprospectsforrenewableenergy,whichfocusesonrenewableelectricitygenerationinAfricanpowerpools.ItscontextisthelackofaregionalmasterplanforpowersystemexpansioninNorthAfrica(Algeria,Egypt,Libya,Morocco,MauritaniaandTunisia)andIRENA’sinvolvementinthesearchforenergytransitionpathwaysfortheregion.ArecentexampleofthatinvolvementisIRENA’sparticipationasamodellingpartnerforthedevelopmentoftheAfricanContinentalPowerSystemsMasterPlan(CMP),aninitiativeledbytheAfricanUnionDevelopmentAgency’sNewPartnershipforAfrica’sDevelopment(AUDA-NEPAD)withthetechnicalandfinancialsupportoftheEuropeanUnion.

ThisreportpresentsvariousscenariosforpowersystemexpansioninNorthAfricathrough2040,includingthepotentialitiesofhydrogenproductionandofinterconnectionswithinandoutsidetheregion(SouthernEuropethroughMoroccoandTunisia;andWesternAsiathroughEgypt).FeedbackfromnationalexpertswascollectedduringaworkshopinMarch2022,butthisreportdoesnotnecessarilyreflectcountries’officialpositions.Nordoesitintendtoprescribeapathforpowersectordevelopment.ThereportisbasedontheSystemPlanningTestModelforNorthAfrica(SPLAT-NorthAfrica),amodeldevelopedbyIRENAandbuiltonpubliclyavailabledata.SPLAT-NorthAfricacanbeusedinfuturecapacity-buildingeventsandbythecountriesoftheregiontoconducttheirownanalyses.

ThereportshowcasespossibilitiesforNorthAfricancountriestodiversifytheirelectricitygenerationmixesandreducetheirrelianceonfossilfuelresourcesby2040.Theregionstandstobenefitfromfallingrenewableenergycostsanditsampleendowmentsofwindandsolarenergy.Bothcanhelptheregiondecreasesthecostofelectricitygenerationbyincreasingtheshareofrenewablesintheelectricitymix.Diversifyingthesourcesofelectricitygenerationwouldalsoallowtheregiontochoosebetweenusingitsfossilfuelresourceslocallyorexportingthem.TheflexibilitytomakesuchchoicesishighlyrelevantinacontextofhighfossilfuelpricesandthedesireofEuropetoincreaseimportsofnaturalgasfromNorthAfrica.

PowergenerationinAlgeria,Egypt,LibyaandTunisiaisdominatedbynaturalgas,whilecoalistheprimarysourceinMoroccoandoilinMauritania.Thevulnerabilityoffossil-fuel-based,non-diversifiedpowergenerationistwofold.First,countriesthatrelyheavilyonimportedfossilfuels(Tunisia,MoroccoandMauritania)areexposedtoexternalpriceshocksinadditiontotheweightofimportsonforeigncurrencyreserves.Second,countrieswithfossilfuelreservestendtosubsidisethenationalfossilfuelindustrysoastoencouragecheapergenerationfromdomesticallyproducedfossilfuels,contortingcountries’fiscalposture.Fallingcapitalcostsforsolarphotovoltaicandwind–accompaniedbytheglobalpoliticalandsocialpressurestoachieveinternationalclimateobjectives–willmakeitincreasinglydifficulttosecuresocialacceptanceofthehighercostsoffossil-fuel-basedgeneration.Continuedinvestmentinthatfossil-fuel-basedgenerationinfrastructuremaywellleavecountrieswithpowerplantsthatwillbelittleused,bothbecauseoftheirhigherfuelcostsandinordertocomplywithtargetsforreductionofcarbondioxideemissions.

Basedonthemodellingstudiespresentedhere,thisreportfindsthatlarge-scaleroll-outofvariablerenewableelectricitygenerationfromsolarandwindpowerwouldbeacost-efficientwaytoavoidcontinuedrelianceonfossilfuels,whilecontinuingtomeettherisingdemandforelectricityinNorthAfrica.Althoughsolarandwindresourcesareweatherdependentandthusvariable,thereportshowshowtheeffectsofvariabilitycanbemitigatedusingmodernstoragesolutions(notablybatterystorage)andgreenhydrogenproductionforelectricityexporttotheEuropeanmarket.Theresultsshowthatsuchatransitionpathwouldlowertheunitcostsofpowergenerationfromthosethatwouldresultfromcountries’currentpolicies.Moreover,suchtransitionswouldhelpmostcountriesreducegreenhousegasemissions.

Chapter1ofthereportpresentsaregionaloverviewoftheregion’senergyandelectricitysituation.Chapter2describesthemethodsandassumptionsusedtocompilefourscenariosfortheexpansionofgeneratingcapacityintheregionanddiscussestheaggregateresultsofthosescenarios.TheaccompanyingDataappendix(IRENA2022b),presentsthedatausedinthestudyandthecountryresultsobtainedbyprocessingthosedatausingthemodeldescribedinChapter2.

•10•PLANNINGANDPROSPECTSFORRENEWABLEPOWER

NORTHAFRICA•11•

KEYTAKEAWAYS

NorthAfricancountriesarehighlydependentonfossilfuelsforelectricitygeneration,renderingthemvulnerabletopricefluctuationsoffossilfuelcommoditiesonglobalmarketsandstrainingnationalbudgetsthroughsubsidisationoffossil-fuel-basedgeneration.

DiversifyingawayfromacontinueddependenceonfossilfuelswillallowNorthAfricatosimultaneouslylowertheunitcostsofpowergenerationandallowtheregiontochoosebetweenusingitsfossilfuelresourceslocallyorexportingthem.Diversificationcanalsolowertherisksofdisruptionofenergysupplyincountrieslackinglocalfossilfuelresources.Alarge-scaleexpansionofsolarPV,concentratedsolarpowerandwindpowercapacity,substantiallybeyondcountries’currenttargets,couldfacilitatesuchatransition.

Powergenerationcostscouldbefurtherreducedthroughutility-scaledeploymentofbatterypowerplants,whichwouldmakeitpossibletointegratesolarPVplantswiththegridandreducetheneedforadditionalinterconnectionsbetweenthecountriesoftheregion.

Evenfurtherbenefitscouldbereapedfromtheproductionofgreenhydrogenforexporttoothermarkets,suchasEurope.Underanambitioushydrogenexportscenario,apronouncedexpansionofsolarandwindpowertechnologiestoallowforlarge-scalehydrogenproductioncouldresultinevenlowerunitcostsofelectricity,increasingearningsfromhydrogenexportsatcompetitiveprices.

Suchascenariowouldrequireaquadruplingofpowersectorsizesandinvestmentsovercurrentplans,butitwouldcutelectricitygenerationcostsinhalf.

Asidefromreducingcountries’dependenciesonextractiveresources,suchatransitionwouldhavetheadditionalbenefitofsubstantiallyloweringgreenhousegasemissionsfromthepowersectorcomparedwithpresentemissionsandthosethatwouldbeproducedundercurrentplans.Thethreetransitionscenariospresentedinthisreportwouldbringa75%reductioninemissionlevelsby2040comparedwith2020.

•12•PLANNINGANDPROSPECTSFORRENEWABLEPOWER

NORTHAFRICA•13•

1

REGIONALOVERVIEW

ANDKEYDATA

1.1CONTRIBUTIONOFTHISREPORT

IRENA’sSPLAT-MESSAGE(SystemPlanningTestmodelbasedontheModelforEnergySupplyStrategyAlternativesandtheirGeneralEnvironmentalImpact)capacityexpansionmodellingframework,discussedinSection2.1,wasusedtodeveloptheSPLAT-NorthAfricamodel,coveringsixNorthAfricancountries(Algeria,Egypt,Libya,Mauritania,MoroccoandTunisia)tochartpossiblepathwaysforNorthAfrica’sfutureelectricitysupply.Inparticular,thenetbenefitsofstorage(batteriesandhydrogen,thelatterforexporttoEuropeanmarkets)inaninterconnectedelectricitysystemwereinvestigatedtoilluminatethepossibilitiesofreachingamuchlargershareofrenewableelectricityandacorrespondingdiversificationawayfromfossilfuelsby2040.

Adetaileddescriptionofthemainassumptions–includingthegeographicandtemporalcharacterisationofrenewableresources(solarandwind),estimatesoffutureelectricitydemandinthecountriesoftheregion,internationalfuelprices,andestimatesofinvestmentcostsbytechnologytype–isprovidedinChapter2.TheaccompanyingDataappendix(IRENA,2022b)presentsthedatausedinthestudyandthecountryresultsobtainedbyprocessingthosedatausingthemodeldescribedinChapter2.

Thisfirstchaptersu

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论