北京理工大附中分校2022-2023学年数学八下期末考试模拟试题含解析_第1页
北京理工大附中分校2022-2023学年数学八下期末考试模拟试题含解析_第2页
北京理工大附中分校2022-2023学年数学八下期末考试模拟试题含解析_第3页
北京理工大附中分校2022-2023学年数学八下期末考试模拟试题含解析_第4页
北京理工大附中分校2022-2023学年数学八下期末考试模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如果不等式组有解,那么m的取值范围是A. B. C. D.2.如图,已知,添加下列条件后,仍不能判定的是()A. B.C. D.3.若无解,则m的值是()A.3 B.﹣3 C.﹣2 D.24.菱形,矩形,正方形都具有的性质是()A.四条边相等,四个角相等B.对角线相等C.对角线互相垂直D.对角线互相平分5.如图,在中,,,,以点为圆心,长为半径画弧,交于点,则()A.2.5 B.3 C.2 D.3.56.直线y=-3x+2经过的象限为()A.第一、二、四象限 B.第一、二、三象限 C.第一、三、四象限 D.第二、三、四象限7.在Rt△ABC中,∠C=90°.如果BC=3,AC=5,那么AB=()A. B.4 C.4或 D.以上都不对8.如图,点P是边长为1的菱形ABCD对角线AC上的一个动点,点M,N分别是AB,BC边上的中点,则MP+PN的最小值是()A. B.1 C. D.29.如图,折叠菱形纸片ABCD,使得A′D′对应边过点C,若∠B=60°,AB=2,当A′E⊥AB时,AE的长是()A.2 B.2 C. D.1+10.如图,矩形ABCD中,E,F分别是线段BC,AD的中点,AB=2,AD=4,动点P沿EC,CD,DF的路线由点E运动到点F,则△PAB的面积s是动点P运动的路径总长x的函数,这个函数的大致图象可能是A.A B.B C.C D.D11.满足不等式的正整数是()A.2.5 B. C.-2 D.512.下面几个函数关系式中,成正比例函数关系的是()A.正方体的体积和棱长B.正方形的周长和边长C.菱形的面积一定,它的两条对角线长D.圆的面积与它的半径二、填空题(每题4分,共24分)13.若直角三角形其中两条边的长分别为3,4,则该直角三角形斜边上的高的长为________.14.现有两根长6分米和3分米的木条,小华想再找一根木条为老师制作一个直角三角形教具,则第三根木条的长度应该为___分米.15.如图,在菱形ABCD中,AB=4,线段AD的垂直平分线交AC于点N,△CND的周长是10,则AC的长为__________.16.函数中,自变量的取值范围是___.17.如图,已知△ABC中,AC=BC,∠ACB=90°,直角∠DFE的顶点F是AB中点,两边FD,FE分别交AC,BC于点D,E两点,当∠DFE在△ABC内绕顶点F旋转时(点D不与A,C重合),给出以下个结论:①CD=BE;②四边形CDFE不可能是正方形;③△DFE是等腰直角三角形;④S四边形CDFE=S△ABC.上述结论中始终正确的有______.(填序号)18.如图,在RtΔABC中,∠ACB=90°,D是AB的中点,若∠A=26三、解答题(共78分)19.(8分)某校为了弘扬中华传统文化,了解学生整体阅读能力,组织全校的1000名学生进行一次阅读理解大赛.从中抽取部分学生的成绩进行统计分析,根据测试成绩绘制了频数分布表和频数分布直方图:分组/分频数频率50≤x<6060.1260≤x<700.2870≤x<80160.3280≤x<90100.2090≤x≤10040.08(1)频数分布表中的;(2)将上面的频数分布直方图补充完整;(3)如果成绩达到90及90分以上者为优秀,可推荐参加决赛,估计该校进入决赛的学生大约有人.20.(8分)如图,在四边形中,,点在上,,,.(1)求的度数;(2)直接写出四边形的面积为.21.(8分)为创建“国家园林城市”,某校举行了以“爱我黄石”为主题的图片制作比赛,评委会对200名同学的参赛作品打分发现,参赛者的成绩x均满足50≤x<100,并制作了频数分布直方图,如图.根据以上信息,解答下列问题:(1)请补全频数分布直方图;(2)若依据成绩,采取分层抽样的方法,从参赛同学中抽40人参加图片制作比赛总结大会,则从成绩80≤x<90的选手中应抽多少人?(3)比赛共设一、二、三等奖,若只有25%的参赛同学能拿到一等奖,则一等奖的分数线是多少?22.(10分)如图①,在矩形ABCD中,AB=,BC=3,在BC边上取两点E、F(点E在点F的左边),以EF为边所作等边△PEF,顶点P恰好在AD上,直线PE、PF分别交直线AC于点G、H.(1)求△PEF的边长;(2)若△PEF的边EF在线段CB上移动,试猜想:PH与BE有何数量关系?并证明你猜想的结论;(3)若△PEF的边EF在射线CB上移动(分别如图②和图③所示,CF>1,P不与A重合),(2)中的结论还成立吗?若不成立,直接写出你发现的新结论.23.(10分)已知:如图,在□ABCD中,DE、BF分别是∠ADC和∠ABC的角平分线,交AB、CD于点E、F,连接BD、EF.(1)求证:BD、EF互相平分;(2)若∠A=600,AE=2EB,AD=4,求四边形DEBF的周长和面积.24.(10分)如图,矩形ABCD中,∠ABD、∠CDB的平分线BE、DF分别交边AD、BC于点E、F.(1)求证:四边形BEDF是平行四边形;(2)当∠ABE为多少度时,四边形BEDF是菱形?请说明理由.25.(12分)如图,已知ABC为等边三角形,点D、E分别在BC、AC边上,且AE=CD,AD与BE相交于点F.(1)求证:BE=AD;(2)求∠BFD的度数.26.如图,方格纸中每个小正方形的边长均为1,我们把每个小正方形的顶点叫做格点.如:线段AB的两个端点都在格点上.(1)在图1中画一个以AB为边的平行四边形ABCD,点C、D在格点上,且平行四边形ABCD的面积为15;(2)在图2中画一个以AB为边的菱形ABEF(不是正方形),点E、F在格点上,则菱形ABEF的对角线AE=________,BF=________;(3)在图3中画一个以AB为边的矩形ABMN(不是正方形),点M、N在格点上,则矩形ABMN的长宽比=______.

参考答案一、选择题(每题4分,共48分)1、C【解析】

在数轴上表示两个不等式的解集,若不等式组有解,则有公共部分,可求得m的取值范围.【详解】在数轴上分析可得,不等式组有解,则两个不等式有公共解,那么m的取值范围是.故选:C【点睛】本题考核知识点:不等式组的解.解题关键点:理解不等式组的解的意义.2、C【解析】

根据全等三角形的判定方法逐项判断即可.【详解】解:在△ABC和△ADC中,已知,AC=AC,A、添加后,可根据SSS判定,所以本选项不符合题意;B、添加后,可根据SAS判定,所以本选项不符合题意;C、添加后,不能判定,所以本选项符合题意;D、添加后,可根据HL判定,所以本选项不符合题意.故选:C.【点睛】本题考查了全等三角形的判定,属于基本题型,熟练掌握全等三角形的判定方法是解题关键.3、D【解析】方程两边同乘以x-3可得m+1-x=0,因无解,可得x=3,代入得m=2,故选D.4、D【解析】试题解析:A、不正确,矩形的四边不相等,菱形的四个角不相等;B、不正确,菱形的对角线不相等;C、不正确,矩形的对角线不垂直;D、正确,三者均具有此性质;故选D.5、C【解析】

首先利用勾股定理可以算出AB的长,再根据题意可得到AD=AC,根据BD=AB-AD即可算出答案.【详解】∵AC=3,BC=4,

∴AB==5,

∵以点A为圆心,AC长为半径画弧,交AB于点D,

∴AD=AC,

∴AD=3,

∴BD=AB-AD=5-3=1.

故选:C.【点睛】此题考查勾股定理,解题关键是熟练掌握勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.6、A【解析】分析:根据一次函数的性质解答即可.详解:由题意可得,一次函数的系数小于零,则一次函数的图象经过二、四象限,因为一次函数的常数项大于零,则一次函数的图象与轴相交于正半轴,则经过第一象限,综上所述,一次函数的图象经过一、二、四象限,故本一次函数不经过第三象限.故选A.点睛:本题考查了一次函数的图象,熟练掌握一次函数的性质是解本题的关键.7、A【解析】解:∵∠C=90°,AC=5,BC=3,∴AB===.故选A.8、B【解析】

先作点M关于AC的对称点M′,连接M′N交AC于P,此时MP+NP有最小值.然后证明四边形ABNM′为平行四边形,即可求出MP+NP=M′N=AB=1.【详解】解:如图,作点M关于AC的对称点M′,连接M′N交AC于P,此时MP+NP有最小值,最小值为M′N的长.∵菱形ABCD关于AC对称,M是AB边上的中点,∴M′是AD的中点,又∵N是BC边上的中点,∴AM′∥BN,AM′=BN,∴四边形ABNM′是平行四边形,∴M′N=AB=1,∴MP+NP=M′N=1,即MP+NP的最小值为1,故选B.9、B【解析】

先延长AB,D'A'交于点G,根据三角形外角性质以及等腰三角形的判定,即可得到BC=BG=BA,设AE=x=A'E,则BE=2−x,GE=4−x,A'G=2x,在Rt△A'GE中,依据勾股定理可得A'E2+GE2=A'G2,进而得出方程,解方程即可.【详解】解:如图所示,延长AB,D'A'交于点G,∵A'E⊥AB,∠EA'C=∠A=120°,∴∠BGC=120°﹣90°=30°,又∵∠ABC=60°,∴∠BCG=60°﹣30°=30°,∴∠BGC=∠BCG=30°,∴BC=BG=BA,设AE=x=A'E,则BE=AB﹣AE=2﹣x,A'G=2x,∴GE=BG+BE=2+2﹣x=4﹣x,∵Rt△A'GE中,A'E2+GE2=A'G2,∴x2+(4﹣x)2=(2x)2,解得:x=﹣2+2,(负值已舍去)∴AE=2﹣2,故选B.【点睛】本题主要考查了折叠问题,等腰三角形的判定,菱形的性质,解一元二次方程以及勾股定理的运用;解决问题的关键是作辅助线构造直角三角形,依据勾股定理列方程求解.10、C【解析】

分点P在EC、CD、DF上运动,根据三角形面积公式进行求解即可得.【详解】当点P在EC上运动时,此时0≤x≤2,PB=2+x,则S△PAB==×2(2+x)=x+2;当点P在CD运动时,此时2<x≤4,点P到AB的距离不变,为4,则S△PAB=×2×4=4;当点P在DF上运动时,此时4<x≤6,AP=2+(6-x)=8-x,S△PAB==×2(8-x)=8-x,观察选项,只有C符合,故选C.【点睛】本题考查了动点问题的函数图象,分情况求出函数解析式是解题的关键.11、D【解析】

在取值范围内找到满足条件的正整数解即可.【详解】不等式的正整数解有无数个,四个选项中满足条件的只有5故选:D.【点睛】考查不等式的解,使不等式成立的未知数的值就是不等式的解.12、B【解析】

根据正比例函数的定义进行判断.【详解】解:A、设正方体的体积为V,棱长为a,则V=a3,不符合正比例函数的定义,故本选项错误;B、设正方形的周长为C,边长为a,则C=4a,符合正比例函数的定义,故本选项正确;C、设菱形面积为S,两条对角线长分别为m,n,则S=mn,不符合正比例函数的定义,故本选项错误;D、设圆的面积为S,半径为r,则S=πr2,不符合正比例函数的定义,故本选项错误;故选:B.【点睛】本题主要考查正比例函数的定义:一般地,两个变量x,y之间的关系式可以表示成形如y=kx(k为常数,且k≠0)的函数,那么y就叫做x的正比例函数.二、填空题(每题4分,共24分)13、2.4或【解析】

分两种情况:直角三角形的两直角边为3、4或直角三角形一条直角边为3,斜边为4,首先根据勾股定理即可求第三边的长度,再根据三角形的面积即可解题.【详解】若直角三角形的两直角边为3、4,则斜边长为,设直角三角形斜边上的高为h,,∴.若直角三角形一条直角边为3,斜边为4,则另一条直角边为设直角三角形斜边上的高为h,,∴.故答案为:2.4或.【点睛】本题考查了勾股定理和直角三角形的面积,熟练掌握勾股定理是解题的关键.14、或3【解析】

根据勾股定理解答即可.【详解】解:第三根木条的长度应该为或分米;故答案为或3..【点睛】此题考查勾股定理,关键是根据勾股定理解答.15、6【解析】∵菱形ABCD中,AB=4,AD的垂直平分线交AC于点N,∴CD=AB=4,AN=DN,∵△CDN的周长=CN+CD+DN=10,∴CN+4+AN=10,∴CN+AN=AC=6.故答案为6.16、【解析】

根据二次根式的性质,被开方数大于或等于0,可以求出x的范围.【详解】根据题意得:,解得:.故答案是:.【点睛】函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.17、①③④【解析】

首先连接CF,由等腰直角三角形的性质可得:,则证得∠DCF=∠B,∠DFC=∠EFB,然后可证得:△DCF≌△EBF,由全等三角形的性质可得CD=BE,DF=EF,也可证得S四边形CDFE=S△ABC.问题得解.【详解】解:连接CF,

∵AC=BC,∠ACB=90°,点F是AB中点,∴∠DCF=∠B=45°,

∵∠DFE=90°,

∴∠DFC+∠CFE=∠CFE+∠EFB=90°,

∴∠DFC=∠EFB,

∴△DCF≌△EBF,

∴CD=BE,故①正确;

∴DF=EF,

∴△DFE是等腰直角三角形,故③正确;

∴S△DCF=S△BEF,

∴S四边形CDFE=S△CDF+S△CEF=S△EBF+S△CEF=S△CBF=S△ABC.,故④正确.

若EF⊥BC时,则可得:四边形CDFE是矩形,

∵DF=EF,

∴四边形CDFE是正方形,故②错误.

∴结论中始终正确的有①③④.

故答案为:①③④.【点睛】此题考查了全等三角形的判定与性质,等腰直角三角形的性质,正方形的判定等知识.题目综合性很强,但难度不大,注意数形结合思想的应用.18、52【解析】

根据直角三角形的性质得AD=CD,由等腰三角形性质结合三角形外角性质可得答案.【详解】∵∠ACB=90°,D是AB上的中点,∴CD=AD=BD,∴∠DCA=∠A=26°,∴∠BDC=2∠A=52°.故答案为52.【点睛】此题考查了直角三角的性质及三角形的外角性质,掌握直角三角形斜边中线等于斜边一半的性质是解题的关键.三、解答题(共78分)19、(1)14;(2)补图见解析;(3)1.【解析】

(1)根据第1组频数及其频率求得总人数,总人数乘以第2组频率可得a的值;(2)把上面的频数分布直方图补充完整;(3)根据样本中90分及90分以上的百分比,乘以1000即可得到结果.【详解】(1)∵被调查的总人数为6÷0.12=50人,∴a=50×0.28=14,故答案为:14;(2)补全频数分布直方图如下:(3)估计该校进入决赛的学生大约有1000×0.08=1人,故答案为:1.【点睛】此题考查了用样本估计总体,频数(率)分布表,以及频数(率)分布直方图,弄清题中的数据是解本题的关键.20、(1);(2)四边形的面积为.【解析】

(1)连接AE,得出△ABE是等腰直角三角形,得出∠AEB=45°,,在△ADE中,,得出∠AED=90°,即可得出结果;(2)证出△CDE是等腰直角三角形,得出,BC=BE+CE=3,证明四边形ABCD是直角梯形,由梯形面积公式即可得出结果.【详解】(1)连接,如图所示:,,,,在中,,,,,;(2),,是等腰直角三角形,,,,,,四边形是直角梯形,四边形的面积;故答案为.【点睛】本题考查了勾股逆定理,等腰直角三角形,直角梯形的面积,掌握勾股逆定理,等腰直角三角形的性质是解题的关键.21、(1)见解析;(2)8;(3)80分【解析】

(1)利用总人数200减去其它各组的人数即可求得第二组的人数,从而作出直方图;(2)设抽了x人,根据各层抽取的人数的比例相等,即可列方程求解;(3)利用总人数乘以一等奖的人数,据此即可判断.【详解】解:(1)200﹣(35+40+70+10)=45,如下图:(2)设抽了x人,则,解得x=8;(3)依题意知获一等奖的人数为200×25%=50(人).则一等奖的分数线是80分.22、(1)△PEF的边长为2;(2)PH﹣BE=1,证明见解析;(3)结论不成立,当1<CF<2时,PH=1﹣BE,当2<CF<3时,PH=BE﹣1.【解析】

(1)过P作PQ⊥BC,垂足为Q,由四边形ABCD为矩形,得到∠B为直角,且AD∥BC,得到PQ=AB,又△PEF为等边三角形,根据“三线合一”得到∠FPQ为30°,在Rt△PQF中,设出QF为x,则PF=2x,由PQ的长,根据勾股定理列出关于x的方程,求出x的值,即可得到PF的长,即为等边三角形的边长;(2)PH﹣BE=1,过E作ER垂直于AD,如图所示,首先证明△APH为等腰三角形,在根据矩形的对边平行得到一对内错角相等,可得∠APE=60°,在Rt△PER中,∠REP=30°,根据直角三角形中,30°角所对的直角边等于斜边的一半,由PE求出PR,由PA=PH,则PH﹣BE=PA﹣BE=PA﹣AR=PR,即可得到两线段的关系;(3)当若△PEF的边EF在射线CB上移动时(2)中的结论不成立,由(2)的解题思路可知当1<CF<2时,PH=1﹣BE,当2<CF<3时,PH=BE﹣1.【详解】解:(1)过P作PQ⊥BC于Q(如图1),∵四边形ABCD是矩形,∴∠B=90°,即AB⊥BC,又∵AD∥BC,∴PQ=AB=,∵△PEF是等边三角形,∴∠PFQ=60°,在Rt△PQF中,∠FPQ=30°,设PF=2x,QF=x,PQ=,根据勾股定理得:,解得:x=1,故PF=2,∴△PEF的边长为2;(2)PH﹣BE=1,理由如下:∵在Rt△ABC中,AB=,BC=3,∴由勾股定理得AC=2,∴CD=AC,∴∠CAD=30°∵AD∥BC,∠PFE=60°,∴∠FPD=60°,∴∠PHA=30°=∠CAD,∴PA=PH,∴△APH是等腰三角形,作ER⊥AD于R(如图2)Rt△PER中,∠RPE=60°,∴PR=PE=1,∴PH﹣BE=PA﹣BE=PR=1.(3)结论不成立,当1<CF<2时,PH=1﹣BE,当2<CF<3时,PH=BE﹣1.【点睛】本题考查相似形综合题.23、(1)证明见解析;(2)四边形DEBF的周长为12,面积是4【解析】分析:(1)证明EF、BD互相平分,只要证DEBF是平行四边形;利用两组对边分别平行来证明.

(2)求四边形DEBF的周长,求出BE和DE即可.详解:(1)∵四边形ABCD是平行四边形∴CD∥AB,CD=AB,AD=BC∵DE、BF分别是∠ADC和∠ABC的角平分线∴∠ADE=∠CDE,∠CBF=∠ABF∵CD∥AB,∴∠AED=∠CDE,∠CFB=∠ABF∴∠AED=∠ADE,∠CFB=∠CBF∴AE=AD,CF=CB,∴AE=CF,∴AB-AE=CD-CF即BE=DF∵DF∥BE,∴四边形DEBF是平行四边形∵∠A=60°,AE=AD∴△ADE是等边三角形∵AD=4,∴DE=AE=4,∵AE=2EB,∴BE=2∴四边形DEBF的周长=2(BE+DE)=2(4+2)=12过D点作DG⊥AB于点G,在Rt△ADG中,AD=4,∠A=60°,∴DG=ADcos∠A=4×=∴四边形DEBF的面积=BE×DG=2×=4点睛:此题主要考查了平行四边形的性质与判定.在应用判定定理判定平行四边形时,应仔细观察题目所给的条件,仔细选择适合于题目的判定方法进行解答,避免混用判定方法.24、(1)见解析;(2)见解析.【解析】试题分析:(1)由矩形可得∠ABD=∠CDB,结合BE平分∠ABD、DF平分∠BDC得∠EBD=∠FDB,即可知BE∥DF,根据AD∥BC即可得证;(2)当∠ABE=30°

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论