黑龙江省龙江县2022-2023学年数学八年级第二学期期末学业水平测试模拟试题含解析_第1页
黑龙江省龙江县2022-2023学年数学八年级第二学期期末学业水平测试模拟试题含解析_第2页
黑龙江省龙江县2022-2023学年数学八年级第二学期期末学业水平测试模拟试题含解析_第3页
黑龙江省龙江县2022-2023学年数学八年级第二学期期末学业水平测试模拟试题含解析_第4页
黑龙江省龙江县2022-2023学年数学八年级第二学期期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图,Rt△ABC中,∠C=90°,AD是∠BAC的平分线,CD=3,△ABD的面积等于18,则AB的长为()A.9 B.12 C.15 D.182.如图,在平面直角坐标系中,直线y=﹣x+4与x轴、y轴分别交于A、B两点,点C在第二象限,若BC=OC=OA,则点C的坐标为()A.(﹣,2) B.(﹣3,) C.(﹣2,2) D.(﹣3,2)3.函数y=的自变量x的取值范围是()A.x≠2 B.x<2 C.x≥2 D.x>24.若关于的分式方程的根是正数,则实数的取值范围是().A.,且 B.,且C.,且 D.,且5.2022年将在北京﹣张家口举办冬季奥运会,北京将成为世界上第一个既举办夏季奥运会,又举办冬季奥运会的城市.某队要从两名选手中选取一名参加比赛,为此对这两名队员进行了五次测试,测试成绩如图所示:则下列说法中正确的是()A.SA2>SB2,应该选取B选手参加比赛B.SA2<SB2,应该选取A选手参加比赛C.SA2≥SB2,应该选取B选手参加比赛D.SA2≤SB2,应该选取A选手参加比赛6.下列二次根式中,属于最简二次根式的是(

)A. B. C. D.7.如图,在四边形中,,交于,平分,,下面结论:①;②是等边三角形;③;④,其中正确的有A.1个 B.2个 C.3个 D.4个8.二十一世纪,纳米技术将被广泛应用,纳米是长度计量单位,1纳米=0.000000001米,则5纳米可以用科学记数法表示为()A.米 B.米 C.米 D.米9.八年级某同学6次数学小测验的成绩分别为95分,80分,85分,95分,95分,85分,则该同学这6次成绩的众数和中位数分别是()A.95分,95分 B.95分,90分 C.90分,95分 D.95分,85分10.菱形的两条对角线长分别为6和8,则菱形的面积是()A.10 B.20 C.24 D.48二、填空题(每小题3分,共24分)11.关于x的方程ax﹣2x﹣5=0(a≠2)的解是_____.12.若二次根式在实数范围内有意义,则x的取值范围是_____.13.因式分解:a2﹣4=_____.14.已知正n边形的每一个内角为150°,则n=_____.15.如图,在平面直角坐标系中,O为坐标原点,四边形OABC是长方形,点A、C的坐标分别为A(10,0)、C(0,4),点D是OA的中点,点P在BC边上运动,当△ADP为等腰三角形时,点P的坐标为_______________________________.16.甲、乙两人进行射击测试,每人10次射击成绩的平均数都是8.5环,方差分别是:S甲2=2,S乙2=1.5,则射击成绩较稳定的是_____________(填“甲”或“乙“).17.某日,王艳骑自行车到位于家正东方向的演奏厅听音乐会.王艳离家5分钟后自行车出现故障而且发现没有带钱包,王艳立即打电话通知在家看报纸的爸爸骑自行车赶来送钱包(王艳打电话和爸爸准备出门的时间忽略不计),同时王艳以原来一半的速度推着自行车继续走向演奏厅.爸爸接到电话后,立刻出发追赶王艳,追上王艳的同时,王艳坐上出租车并以爸爸速度的2倍赶往演奏厅(王艳打车和爸爸将钱包给王艳的时间忽略不计),同时爸爸立刻掉头以原速赶到位于家正西方3900米的公司上班,最后王艳比爸爸早到达目地的.在整个过程中,王艳和爸爸保持匀速行驶.如图是王艳与爸爸之间的距离y(米)与王艳出发时间x(分钟)之间的函数图象,则王艳到达演奏厅时,爸爸距离公司_____米.18.如果P(2,m),A(1,1),B(4,0)三点在同一直线上,则m的值为_________.三、解答题(共66分)19.(10分)如图,正方形ABCD的顶点坐标分别为A(1,2),B(1,-2),C(5,-2),D(5,2),将正方形ABCD向左平移5个单位,作出它的图像,并写出图像的顶点坐标.20.(6分)如图,四边形是平行四边形,、是对角线上的两个点,且.求证:.21.(6分)如图,四边形ABCD是正方形,点E是BC边上任意一点,AEF90°,且EF交正方形外角的平分线CF于点F.求证:AE=EF.22.(8分)如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△ABC的顶点均在格点上,请按要求完成下列步骤:(1)画出将△ABC向上平移3个单位后得到的△A1B1C1;(2)画出将△A1B1C1绕点C1按顺时针方向旋转90°后所得到的△A2B2C1.23.(8分)把下列各式因式分解:(1)a3﹣4a2+4a(2)a2(x﹣y)+b2(y﹣x)24.(8分)如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫作格点.ΔABC的三个顶点A,B,C都在格点上,将ΔABC绕点A按顺时针方向旋转90∘得到ΔA(1)在正方形网格中,画出ΔAB(2)画出ΔAB'C'向左平移(3)计算线段AB在变换到AB'25.(10分)如图,在平面直角坐标系中,正方形OABC的边长为a.直线y=bx+c交x轴于E,交y轴于F,且a、b、c分别满足﹣(a﹣4)2≥0,c=+8.(1)求直线y=bx+c的解析式并直接写出正方形OABC的对角线的交点D的坐标;(2)直线y=bx+c沿x轴正方向以每秒移动1个单位长度的速度平移,设平移的时间为t秒,问是否存在t的值,使直线EF平分正方形OABC的面积?若存在,请求出t的值;若不存在,请说明理由;(3)点P为正方形OABC的对角线AC上的动点(端点A、C除外),PM⊥PO,交直线AB于M,求的值.26.(10分)正方形ABCD中,E是BC上一点,F是CD延长线上一点,BE=DF,连接AE,AF,EF,G为EF中点,连接AG,DG.(1)如图1:若AB=3,BE=1,求DG;(2)如图2:延长GD至M,使GM=GA,过M作MN∥FD交AF的延长线于N,连接NG,若∠BAE=30°.求证:

参考答案一、选择题(每小题3分,共30分)1、B【解析】

过D作DE⊥AB于E,由角平分线的性质,即可求得DE的长,继而利用三角形面积解答即可.【详解】如图,过D作DE⊥AB于E,∵AD平分∠BAC,∠C=90°,∴DE=DC=3,∵△ABD的面积等于18,∴△ABD的面积=.∴AB=12,故选B.【点睛】本题考查了角平分线的性质,能根据角平分线性质得出DE=CD是解此题的关键,注意:角平分线上的点到这个角两边的距离相等.2、A【解析】

根据一次函数图象上点的坐标特征可求出点A、B的坐标,由BC=OC利用等腰三角形的性质可得出OC、OE的值,再利用勾股定理可求出CE的长度,此题得解.【详解】∵直线y=-x+4与x轴、y轴分别交于A、B两点,

∴点A的坐标为(3,0),点B的坐标为(0,4).

过点C作CE⊥y轴于点E,如图所示.∵BC=OC=OA,

∴OC=3,OE=2,

∴CE=,∴点C的坐标为(-,2).

故选A.【点睛】考查了一次函数图象上点的坐标特征、等腰三角形的性质以及勾股定理,利用等腰直角三角形的性质结合勾股定理求出CE、OE的长度是解题的关键.3、D【解析】

根据被开放式的非负性和分母不等于零列出不等式即可解题.【详解】解:∵函数y=有意义,∴x-20,即x>2故选D【点睛】本题考查了根式有意义的条件,属于简单题,注意分母也不能等于零是解题关键.4、D【解析】分析:利用解分式方程的一般步骤解出方程,根据题意列出不等式,解不等式即可.详解:方程两边同乘1(x﹣1)得:m=1(x-1)﹣4(x-1),解得:x=.∵≠1,∴m≠1,由题意得:>0,解得:m<6,实数m的取值范围是:m<6且m≠1.故选D.点睛:本题考查的是分式方程的解、一元一次不等式的解法,掌握解分式方程的一般步骤、分式方程无解的判断方法是解题的关键.5、B【解析】

根据方差的定义,方差越小数据越稳定.【详解】根据统计图可得出:SA2<SB2,则应该选取A选手参加比赛;故选:B.【点睛】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.6、C【解析】

满足下列两个条件的二次根式,叫做最简二次根式:(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含能开得尽方的因数或因式.【详解】A、=,故A不是;B、=,故B不是;C、,是;D、=,故D不是.故选C【点睛】考查了最简二次根式的概念,熟练掌握最简二次根式所需要满足的条件是解题的关键.7、C【解析】

由两组对边平行证明四边形AECD是平行四边形,由AD=DC得出四边形AECD是菱形,得出AE=EC=CD=AD,则∠EAC=∠ECA,由角平分线定义得出∠EAB=∠EAC,则∠EAB=∠EAC=∠ECA,证出∠EAB=∠EAC=∠ECA=30°,则BE=AE,AC=2AB,①正确;由AO=CO得出AB=AO,由∠EAB=∠EAC=30°得出∠BAO=60°,则△ABO是等边三角形,②正确;由菱形的性质得出S△ADC=S△AEC=AB•CE,S△ABE=AB•BE,由BE=AE=CE,则S△ADC=2S△ABE,③错误;由DC=AE,BE=AE,则DC=2BE,④正确;即可得出结果.【详解】解:∵AD∥BC,AE∥CD,

∴四边形AECD是平行四边形,

∵AD=DC,

∴四边形AECD是菱形,

∴AE=EC=CD=AD,

∴∠EAC=∠ECA,

∵AE平分∠BAC,

∴∠EAB=∠EAC,

∴∠EAB=∠EAC=∠ECA,

∵∠ABC=90°,

∴∠EAB=∠EAC=∠ECA=30°,

∴BE=AE,AC=2AB,①正确;

∵AO=CO,

∴AB=AO,

∵∠EAB=∠EAC=30°,

∴∠BAO=60°,

∴△ABO是等边三角形,②正确;

∵四边形AECD是菱形,

∴S△ADC=S△AEC=AB•CE,

S△ABE=AB•BE,

∵BE=AE=CE,

∴S△ADC=2S△ABE,③错误;

∵DC=AE,BE=AE,

∴DC=2BE,④正确;

故选:C.【点睛】本题考查平行四边形的判定、菱形的判定与性质、角平分线定义、等边三角形的判定、含30°角直角三角形的性质、三角形面积的计算等知识,熟练掌握菱形的性质与含30°角直角三角形的性质是解题关键.8、C【解析】试题分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解:5纳米=5×10﹣9,故选C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.9、B【解析】

根据题目中的数据,可以得到这组数据的众数和中位数,本题得以解决.【详解】解:将这6位同学的成绩从小到大排列为80、85、85、95、95、95,由于95分出现的次数最多,有3次,即众数为95分,第3、4个数的平均数为:85+952=90,即中位数为90故选:B.【点睛】本题考查众数、中位数,解答本题的关键是明确众数、中位数的定义,会求一组数据的众数、中位数.10、C【解析】试题分析:由菱形的两条对角线的长分别是6和8,根据菱形的面积等于对角线积的一半,即可求得答案.解:∵菱形的两条对角线的长分别是6和8,∴这个菱形的面积是:×6×8=1.故选C.考点:菱形的性质.二、填空题(每小题3分,共24分)11、【解析】

利用解一元一次方程的一般步骤解出方程.【详解】ax﹣2x﹣5=0(a﹣2)x=5x=,故答案为:.【点睛】本题考查了一元一次方程的解法,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.12、x>2019【解析】

根据二次根式的定义进行解答.【详解】在实数范围内有意义,即x-20190,所以x的取值范围是x2019.【点睛】本题考查了二次根式的定义,熟练掌握二次根式的定义是本题解题关键.13、(a+2)(a﹣2).【解析】试题分析:直接利用平方差公式分解因式a2﹣4=(a+2)(a﹣2).故答案为(a+2)(a﹣2).【考点】因式分解-运用公式法.14、1【解析】试题解析:由题意可得:解得故多边形是1边形.故答案为1.15、(2,4),(8,4),(7,4),(7.5,4)【解析】

分PD=DA,AD=PA,DP=PA三种情况讨论,再根据勾股定理求P点坐标【详解】当PD=DA

如图:以D为圆心AD长为半径作圆,与BD交P点,P'点,过P点作PE⊥OA于E点,过P'点作P'F⊥OA于F点,

∵四边形OABC是长方形,点A、C的坐标分别为A(10,0)、C(0,4),

∴AD=PD=5,PE=P'F=4

∴根据勾股定理得:DE=DF=∴P(2,4),P'(8,4)

若AD=AP=5,同理可得:P(7,4)

若PD=PA,则P在AD的垂直平分线上,

∴P(7.5,4)

故答案为:(2,4),(8,4),(7,4),(7.5,4)【点睛】本题考查了等腰三角形的性质,勾股定理,利用分类思想解决问题是本题的关键.16、乙【解析】

直接根据方差的意义求解.方差通常用s2来表示,计算公式是:s2=[(x1-x¯)2+(x2-x¯)2+…+(xn-x¯)2];方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.【详解】解:∵S甲2=2,S乙2=1.5,∴S甲2>S乙2,∴乙的射击成绩较稳定.故答案为:乙.【点睛】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.17、1.【解析】

根据函数图象可知,王艳出发10分钟后,爸爸追上了王艳,根据此时爸爸的5分钟的行程等于王艳前5分钟的行程与后5分钟的行程和,得到爸爸的速度与王艳骑自行车的速度的关系,再根据函数图象可知,爸爸到赶到公司时,公司距离演奏厅的距离为9400米,再根据已知条件,便可求得家与演奏厅的距离,由函数图象又可知,王艳到达演奏厅的时间为秒,据此列出方程,求得王艳的速度与爸爸的速度,进而便可求得结果.【详解】解:设王艳骑自行车的速度为xm/min,则爸爸的速度为:(5x+x)÷5=x(m/min),由函数图象可知,公司距离演奏厅的距离为9400米,∵公司位于家正西方3900米,∴家与演奏厅的距离为:9400﹣3900=5500(米),根据题意得,5x+5×x+()×=5500,解得,x=200(m/min),∴爸爸的速度为:(m/min)∴王艳到达演奏厅时,爸爸距离公司的距离为:5×300+3900﹣()×300=1(m).故答案为:1.【点睛】本题考查了函数图象与行程问题,解题的关键是将函数图象与实际的行程对应起来,列出方程,解出相关量.18、【解析】设直线的解析式为y=kx+b(k≠0),∵A(1,1),B(4,0),,解之得,∴直线AB的解析式为,∵P(2,m)在直线上,.三、解答题(共66分)19、见解析;【解析】

根据平移的性质作图,然后结合图形写出顶点坐标.【详解】解:如图所示,正方形A1B1C1D1即为所求,顶点坐标为:A1(-4,2),B1(-4,-2),C1(0,-2),D1(0,2).【点睛】本题考查了作图——平移变换,熟练掌握平移的性质是解题的关键.20、见解析【解析】

先根据平行四边形的性质得,,则,再证明得到AE=CF.【详解】证明:∵四边形为平行四边形∴,∴∵∴∴【点睛】本题考查了平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等;平行四边形的对角线互相平分.21、见解析【解析】

截取BE=BM,连接EM,求出AM=EC,得出∠BME=45°,求出∠AME=∠ECF=135°,求出∠MAE=∠FEC,根据ASA推出△AME和△ECF全等即可.【详解】证明:在AB上截取BM=BE,连接ME,∵∠B=90°,∴∠BME=∠BEM=45°,∴∠AME=135°∵CF是正方形ABCD的外角的角平分线,∴∠ECF=90°+∠DCF=90°+=135°=∠ECF,∵AEF90°∴∠AEB+=90°又∠AEB+=90°,∴∵AB=BC,BM=BE,∴AM=EC,在△AME和△ECF中,∴△AME≌△ECF(ASA),∴AE=EF.【点睛】本题考查了正方形的性质,全等三角形的性质和判定,角平分线的定义,关键是推出△AME≌△ECF.22、(1)作图见解析;(2)作图见解析.【解析】

(1)直接利用平移的性质得出对应点位置进而得出答案;(2)直接利用旋转的性质得出对应点位置进而得出答案.【详解】(1)如图所示:△A1B1C1是所求的三角形.(2)如图所示:△A2B2C1为所求作的三角形.【点睛】此题主要考查了旋转变换以及平移变换,正确得出对应点位置是解题关键.23、(1)a(a﹣2)2;(2)(x﹣y)(a+b)(a﹣b).【解析】

(1)原式提取公因式后,利用完全平方公式分解即可;

(2)原式提取公因式后,利用平方差公式分解即可.【详解】(1)a3﹣4a2+4a=a(a2﹣4a+4)=a(a﹣2)2;(2)a2(x﹣y)+b2(y﹣x)=(x﹣y)(a2﹣b2)=(x﹣y)(a+b)(a﹣b).【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.24、(1)见解析;(2)见解析;(3)25π4【解析】

(1)直接利用旋转的性质得出对应点位置进而得出答案;(2)利用平移的性质得出对应点位置进而得出答案;(3)利用扇形面积求法得出答案.【详解】(1)如图所示:△AB'C'即为所求;(2)如图所示:△A'B″C″即为所求;(3)由勾股定理得AB=5,线段AB在变换到AB'的过程中扫过区域的面积为:90π×52【点睛】本题考查了旋转变换以及平移变换,正确得出对应点位置是解题的关键.25、(1)y=2x+8,D(2,2);(2)存在,5;(3).【解析】

试题分析:(1)利用非负数的性质求出a,b,c的值,进而确定出直线y=bx+c,得到正方形的边长,即可确定出D坐标;(2)存在,理由为:对于直线y=2x+8,令y=0求出x的值,确定出E坐标,根据题意得:当直线EF平移到过D点时正好平分正方形AOBC的面积,设平移后的直线方程为y=2x+t,将D坐标代入求出b的值,确定出平移后直线解析式,进而确定出此直线与x轴的交点,从而求出平移距离,得到t的值;(3)过P点作PQ∥OA,PH∥CO,交CO、AB于N、Q,交CB、OA于G、H,利用同角的余角相等得到一对角相等,再由一对直角相等,利用角平分线定理得到PH=PQ,利用AAS得到三角形OPH与三角形MPQ全等,得到OH=QM,根据四边形CNPG为正方形,得到PG=BQ=CN,由三角形CGP为等腰直角三角形得到CP=GP=BM,即可求出所求式子的值.试题解析:(1)∵-(a-4)2≥0,,∴a=4,b=2,c=8,∴直线y=bx+c的解析式为:y=2x+8,∵正方形OABC的对角线的交点D,且正方形边长为4,∴D(2,2);(2)存在,理由为:对于直线y=2x+8,当y=0时,x=-4,∴E点的坐标为(-4,0),根据题意得:当直线EF平移到过D点时正好平分正方形AOBC的面积,设平移后的直线为y=2x+t,代入D点坐标(2,2),得:2=4+t,即t=-2,∴平移后的直线方程为y=2x-2,令y=0,得到x=1,∴此时直线和x轴的交点坐标为(1,0),平移的距离为1-(-4)=5,则t=5秒;(3)过P点作PQ∥OA,PH∥CO,交CO、AB于N、Q,交CB、OA于G、H,∵∠OPM=∠HPQ=90°,∴∠OPH+∠HPM=90°,∠HPM+∠MPQ=90°,∴∠OPH=∠MPQ,∵AC为∠BAO平分线,且PH⊥

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论