北师大版七年级下册 三角形动态问题(拔高题)(共32张)_第1页
北师大版七年级下册 三角形动态问题(拔高题)(共32张)_第2页
北师大版七年级下册 三角形动态问题(拔高题)(共32张)_第3页
北师大版七年级下册 三角形动态问题(拔高题)(共32张)_第4页
北师大版七年级下册 三角形动态问题(拔高题)(共32张)_第5页
已阅读5页,还剩26页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

三角形动态问题——动点,动线,动图2021/5/911.如图,已△ABC中,AB=AC=12厘米,BC=9厘,点D为AB的中点.(1)如果点P在线段BC上以3厘米/秒的速度由B向C点运动,同时点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,1秒钟时,△BPD与△CQP是否全等,请说明理由;②点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD≌△CPQ?(2)若点Q以②的运动速度从点C出发点P以原来运动速度从点B同时出发,都逆时针沿ABC的三边运动,求多长时间点P与点Q第一次在△ABC的哪条边上相遇?2021/5/92(1)①∵t=1(秒),∴BP=CQ=3(厘米)∵AB=12,D为AB中点,∴BD=6(厘米)又∵PC=BC-BP=9-3=6(厘米)∴PC=BD∵AB=AC,∴∠B=∠C,在△BPD与△CQP中,∴△BPD≌△CQP(SAS),②∵VP≠VQ,∴BP≠CQ,又∵∠B=∠C,要使△BPD≌△CPQ,只能BP=CP=4.5,∵△BPD≌△CPQ,∴CQ=BD=6.∴点P的运动时间此时2021/5/93(2)因为VQ>VP,只能是点Q追上点P,即点Q比点P多走AB+AC的路程设经过x秒后P与Q第一次相遇,依题意得4x=3x+2×12,解得x=24(秒)此时P运动了24×3=72(厘米)又∵△ABC的周长为33厘米,72=33×2+6,∴点P、Q在BC边上相遇,即经过了24秒,点P与点Q第一次在BC边上相遇.2021/5/942.如图,已知长方形ABCD中,AD=6cm,AB=4cm,点E为AD的中点.若点P在线段AB上以1cm/s的速度由点A向点B运动,同时,点Q在线段BC上由点B向点C运动.(1)若点Q的运动速度与点P的运动速度相等,经过1秒后,△AEP与△BPQ是否全等?请说明理由,并判断此时线段PE和线段PQ的位置关系;(2)若点Q的运动速度与点P的运动速度相等,运动时间为t秒,设△PEQ的面积为Scm2,请用t的代数式表示S;2021/5/95(1)∵长方形ABCD,∴∠A=∠B=90°,∵点E为AD的中点,AD=6cm,∴AE=3cm,又∵P和Q的速度相等可得出AP=BQ=1cm,BP=3,∴AE=BP,在△AEP和△BQP中,∴△AEP≌△BPQ,∴∠AEP=∠BPQ,又∵∠AEP+∠APE=90°,故可得出∠BPQ+∠APE=90°,即∠EPQ=90°,即EP⊥PQ.2021/5/96(2)连接QE,由题意得:AP=BQ=t,BP=4﹣t,CQ=6﹣t,SPEQ=SABCD﹣SBPQ﹣SEDCQ﹣SAPE=AD·AB﹣0.5AE·AP﹣0.5BP·BQ﹣0.5(DE+CQ)·CD=24﹣0.5×3t﹣t(4﹣t)﹣0.5×4(3+6﹣t)=0.5t2﹣1.5t+6.2021/5/973.如图,点P、Q分别是边长为6cm的等边ABC边AB、BC上的动点,点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s,下面四个结论:①BQ=AM②③的度数不变,始终等于600④当第2秒或第4秒时,PBQ为直角三角形,正确的有()个.A.1B.2C.3D.4CG2021/5/981或3.5或124.2021/5/995.如图所示,有一直角△ABC,∠C=90°,AC=10cm,BC=5cm,PQ=AB,P,Q两点分别在AC上和过点A且垂直于AC的射线AM上运动.问点P运动到AC上什么位置时,△ABC才能和△APQ全等?解:由题意可知,∠C=∠PAQ=,又AB=PQ,要△ABC≌△APQ,则只须AP=BC或AP=AC即可,从而当点P运动至AP=5cm,即AC中点时,△ABC≌△APQ,或点P与点C重合即AP=AC=10cm时,△ABC≌△AQP.2021/5/9106.如图,CA⊥BC,垂足为C,AC=2cm,BC=6cm,射线BM⊥BQ,垂足为B,动点P从C点出发以1cm/s的速度沿射线CQ运动,点N为射线BM上一动点,满足PN=AB,随着P点运动而运动,当点P运动多少秒时,△BCA与点P、N、B为顶点的三角形全等.解:①当P在线段BC上,AC=BP时,△ACB≌△PBN,∵AC=2,∴BP=2,∴CP=6﹣2=4,∴点P的运动时间为4÷1=4(秒);2021/5/911②当P在线段BC上,AC=BN时,△ACB≌△NBP,这时BC=PN=6,CP=0,因此时间为0秒;③当P在BQ上,AC=BP时,△ACB≌△PBN,∵AC=2,∴BP=2,∴CP=2+6=8,∴点P的运动时间为8÷1=8(秒);④当P在BQ上,AC=NB时,△ACB≌△NBP,∵BC=6,∴BP=6,∴CP=6+6=12,点P的运动时间为12÷1=12(秒),综上所述,当点P运动0或4或8或12秒时,△BCA与点P、N、B为顶点的三角形全等.2021/5/912去掉,7.2021/5/9132021/5/9148.如图,在等腰Rt△ABC中,∠ACB=90°,AC=CB,AC=8,F是AB边上的中点,点D、E分别在AC、BC边上运动,且始终保持AD=CE,连接DE、DF、EF.(1)求证:△ADF≌△CEF;(2)求证:△DFE是等腰直角三角形;(3)在此运动变化的过程中,四边形CDFE的面积是否保持不变?试说明理由;(4)求△CDE面积的最大值.2021/5/915(1)求证:△ADF≌△CEF;.(2)求证:△DFE是等腰直角三角形;2021/5/916(3)在此运动变化的过程中,四边形CDFE的面积是否保持不变?试说明理由;2021/5/917(4)求△CDE面积的最大值.2021/5/918图形的翻折9.如图所示,△ABE和△ADC是△ABC分别沿着AB、AC边翻折180°形成的,若∠BAC=150°,则∠θ的度数是_________.解:由题意得△BAC≌△BAE≌△DAC∴∠EBA=∠ABC,∠ACB=∠ACD根据三角形内角和定理得∠ABC+∠ACB=180°-∠BAC=180°-150°=30°∴∠θ=∠EBC+∠DCB=2(∠ABC+∠ACB)=2×30°=60°.60°2021/5/919折叠与对称10.如图,将长方形纸片ABCD折叠,折痕为EF,若AB=2,BC=3,则阴影部分的周长为________.1011.我们知道,国旗上的五角星是旋转对称图形,当它绕中心旋转到与自身重合时,至少需要旋转()A.36°B.60°C.45°D.72°12.如图,两个直角三角形重叠在一起,将其中一个三角形沿着点B到点C的方向平移到△DEF的位置,∠B=90°,AB=8,DH=3,平移距离为4,求阴影部分的面积为(

)A.

20

B.

24

C.

25

D.

26D旋转问题平移问题D2021/5/92013.在△ABC中,AB=AC,CG⊥BA交BA的延长线于点G.一等腰直角三角尺按如图1所示的位置摆放,该三角尺的直角顶点为F,一条直角边与AC边在一条直线上,另一条直角边恰好经过点B.(1)在图1中请你通过观察、测量BF与CG的长度,猜想并写出BF与CG满足的数量关系,然后证明你的猜想;2021/5/921(2)当三角尺沿AC方向平移到图2所示的位置时,一条直角边仍与AC边在同一直线上,另一条直角边交BC边于点D,过点D作DE⊥BA于点E.此时请你通过观察、测量DE、DF与CG的长度,猜想并写出DE+DF与CG之间满足的数量关系,然后证明你的猜想;2021/5/9222021/5/923(3)当三角尺在(2)的基础上沿AC方向继续平移到图3所示的位置(点F在线段AC上,且点F与点C不重合时,(2)中的猜想是否仍然成立?并说明理由.2021/5/92414.如图1,△ABC的边BC在直线l上,AC⊥BC,且AC=BC;△EFP的边FP也在直线l上,边EF与边AC重合,且EF=FP.(1)如图1,请你写出AB与AP所满足的数量关系和位置关系;(2)将△EFP沿直线l向左平移到图2的位置时,EP交AC于点O,连接AP,BO.猜想并写出BO与AP所满足的数量关系和位置关系,并说明理由;(3)将△EFP沿直线l继续向左平移到图3的位置时,EP的延长线交AC的延长线于点O,连接AP,BO.此时,BO与AP还具有(2)中的数量关系和位置关系吗?请说明理由.2021/5/925(1)∵AC⊥BC,且AC=BC,边EF与边AC重合,且EF=FP.∴△ABC与△EFP是全等的等腰直角三角形,∴∠BAC=∠CAP=45°,AB=AP,∴∠BAP=90°,∴AP=AB,AP⊥AB;(2)延长BO交AP于H点,如图2∵∠EPF=45°,∴△OPC为等腰直角三角形,∴OC=PC,在△ACP和△BCO中∴△ACP≌△BCO(SAS),∴AP=BO,∠CAP=∠CBO,而∠AOH=∠BOC,∴∠AHO=∠BCO=90°,∴AP⊥BO,即BO与AP所满足的数量关系为相等,位置关系为垂直;2021/5/926(3)BO与AP所满足AP=BO,AP⊥BO.理由如下:延长BO交AP于点H,如图3,∵∠EPF=45°,∴∠CPO=45°,∴△CPO为等腰直角三角形,∴OC=PC,∵在△APC和△OBC中,∴△APC≌△OBC(SAS),∴AP=BO,∠APC=∠COB,而∠PBH=∠CBO,∴∠PHB=∠BCO=90°,∴BO⊥AP,即BO与AP所满足的数量关系为相等,位置关系为垂直.2021/5/92715.在△ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图1,当点D在线段BC上,如果∠BAC=90°,则∠BCE=______度,请说明理由;(2)设∠BAC=α,∠BCE=β.①如图2,当点D在线段BC上移动,则α,β之间有怎样的数量关系?请说明理由;②当点D在直线BC上移动,则α,β之间有怎样的数量关系?请说明理由.902021/5/928(1)理由:∵∠BAC=∠DAE,∴∠BAC-∠DAC=∠DAE-∠DAC.即∠BAD=∠CAE.在△ABD与△ACE中,AB=AC∠BAD=∠CAEAD=AE∴△ABD≌△ACE(SAS),∴∠B=∠ACE.∴∠B+∠ACB=∠ACE+∠ACB,∴∠BCE=∠B+∠ACB,又∵∠BAC=90°∴∠BCE=90°2021/5/929(2)①α+β=180°,理由:∵∠BAC=∠DAE,∴∠BAD+∠DAC=∠EAC+∠DAC.即∠BAD=∠CAE.在△ABD与△ACE中,AB=AC∠BAD=∠CAEAD=AE∴△ABD≌△ACE(SAS),∴∠

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论