2023年整理教师资格之中学数学学科知识与教学能力精选试题及答案二_第1页
2023年整理教师资格之中学数学学科知识与教学能力精选试题及答案二_第2页
2023年整理教师资格之中学数学学科知识与教学能力精选试题及答案二_第3页
2023年整理教师资格之中学数学学科知识与教学能力精选试题及答案二_第4页
2023年整理教师资格之中学数学学科知识与教学能力精选试题及答案二_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023年整理教师资格之中学数学学科知识与教学能力精选试题及答案二

单选题(共50题)1、在高等代数中,有一个线性变换叫做正交变换,即不改变任意两点的距离的变换。下列变换中不是正交变换的是()。A.平移变换B.旋转变换C.反射变换D.相似变换【答案】D2、Ⅲ型超敏反应根据发病机制,又可称为A.免疫复合物型超敏反应B.细胞毒型超敏反应C.迟发型超敏反应D.速发型超敏反应E.Ⅵ型超敏反应【答案】A3、诊断急性白血病,外周血哪项异常最有意义()A.白细胞计数2×10B.白细胞计数20×10C.原始细胞27%D.分叶核粒细胞>89%E.中性粒细胞90%【答案】C4、骨髓涂片中见异常幼稚细胞占40%,这些细胞的化学染色结果分别是:POX(-),SB(-),AS-D-NCE(-),α-NBE(+),且不被NaF抑制,下列最佳选择是A.急性单核细胞性白血病B.组织细胞性白血病C.急性粒细胞性白血病D.急性早幼粒白血病E.粒-单细胞性白血病【答案】B5、Ⅱ型超敏反应根据发病机制,又可称为A.免疫复合物型超敏反应B.细胞毒型超敏反应C.迟发型超敏反应D.速发型超敏反应E.Ⅵ型超敏反应【答案】B6、原发性肝细胞癌的标志A.AFPB.CEAC.PSAD.CA125E.CA15-3【答案】A7、设a,b为非零向量,下列命题正确的是()(易错)(1)a×b垂直于a;(2)a×b垂直于b;(3)a×b平行于a;(4)a×b平行于b。正确的个数是()A.0个B.1个C.3个【答案】C8、再次免疫应答的主要抗体是A.IgGB.IgAC.IgMD.IgE.IgD【答案】A9、关于慢性白血病的叙述,错误的是A.以慢粒多见B.大多由急性转化而来C.慢性患者有半数以上可急性变D.慢性急性变用药物化疗无效E.慢性急性变患者大多预后不好【答案】B10、红细胞镰状变形试验用于诊断下列哪种疾病A.HbFB.HbSC.HbHD.HbE.HbBArts【答案】B11、下列哪种疾病做PAS染色时红系呈阳性反应A.再生障碍性贫血B.巨幼红细胞性贫血C.红白血病D.溶血性贫血E.巨幼细胞性贫血【答案】C12、纤溶酶的主要作用是水解()A.因子ⅤB.因子ⅡaC.因子ⅫD.因子Ⅰ和ⅠaE.因子Ⅳ【答案】D13、细胞核内出现颗粒状荧光,分裂期细胞染色体无荧光显示的是A.均质型B.斑点型C.核膜型D.核仁型E.以上均不正确【答案】B14、反复的化脓性感染伴有慢性化脓性肉芽肿形成的是A.选择性IgA缺陷病B.先天性胸腺发育不全综合征C.遗传性血管神经性水肿D.慢性肉芽肿病E.阵发性夜间血红蛋白尿【答案】D15、免疫标记电镜技术获得成功的关键是A.对细胞超微结构完好保存B.保持被检细胞或其亚细胞结构的抗原性不受损失C.选择的免疫试剂能顺利穿透组织细胞结构与抗原结合D.以上叙述都正确E.以上都不对【答案】D16、通过义务教育阶段的数学学习,学生能获得适应社会生活和进一步发展所需的数学的基础知识、基本技能、基本思想和()A.基本方法B.基本思维方式C.基本学习方法D.基本活动经验【答案】D17、与意大利传教士利玛窦共同翻译了《几何原本》(Ⅰ—Ⅵ卷)的我国数学家是()。A.徐光启B.刘徽C.祖冲之D.杨辉【答案】A18、Westgard质控处理规则的应用可以找出的误差是A.系统误差B.随机误差C.系统误差和随机误差D.偶然误差E.以上都不是【答案】C19、血小板膜糖蛋白Ⅱb/Ⅲa(GPⅡb/Ⅲa)复合物与下列哪种血小板功能有关()A.黏附功能B.聚集功能C.分泌功能D.凝血功能E.血块收缩功能【答案】B20、下列哪项有关尿含铁血黄素试验的说法,正确的是()A.是慢性血管内溶血的有力证据B.含铁血黄素内主要为二价铁C.急性溶血者尿中始终为阴性D.经肝细胞分解为含铁血黄素E.阴性时能排除血管内溶血【答案】A21、《学记》中提出“道而弗牵,强而弗抑,开而弗达”。这体现了下列哪项教学原则?()A.启发式原则B.因材施教原则C.循序渐进原则D.巩固性原则【答案】A22、义务教育阶段的数学教育的三个基本属性是()。A.基础性、竞争性、普及型B.基础性、普及型、发展性C.竞争性、普及性、发展性D.基础性、竞争性、发展性【答案】B23、Ⅰ型超敏反应根据发病机制,又可称为A.免疫复合物型超敏反应B.细胞毒型超敏反应C.迟发型超敏反应D.速发型超敏反应E.Ⅵ型超敏反应【答案】D24、数学抽象是数学的基本思想,是形成理性思维的()。A.重要基础B.重要方式C.工具D.基本手段【答案】A25、设A为n阶方阵,B是A经过若干次初等行变换得到的矩阵,则下列结论正确的是()。A.|A|=|B|B.|A|≠|B|C.若|A|=0,则-定有|B|=0D.若|A|>0,则-定有|B|>0【答案】C26、对某目标进行100次独立射击,假设每次射击击中目标的概率是0.2,记X为100次独立射击击中目标的总次数,则E(X2)等于()。A.20B.200C.400D.416【答案】D27、β-血小板球蛋白(β-TG)存在于A.微丝B.致密颗粒C.α颗粒D.溶酶体颗粒E.微管【答案】C28、下面哪位不是数学家?()A.祖冲之B.秦九韶C.孙思邈D.杨辉【答案】C29、高中数学课程是义务教育阶段后普通高级中学的主要课程,具有()。A.基础性、选择性和发展性B.基础性、选择性和实践性C.基础性、实践性和创新性D.基础性、选择性和普适性【答案】A30、下列对向量学习意义的描述:A.1条B.2条C.3条D.4条【答案】D31、荧光着色主要在细胞核周围形成荧光环的是A.均质型B.斑点型C.核膜型D.核仁型E.以上均不正确【答案】C32、患者,男,28岁,患尿毒症晚期,拟接受肾移植手术。移植器官的最适供者是A.父母双亲B.同卵双生兄弟C.同胞姐妹D.同胞兄弟E.无关个体【答案】B33、《普通高中数学课程标准(2017年版)》指出高中数学课程分为哪几种课程?()A.必修课程、选修课程B.必修课程、选择性必修课程、选修课程C.选修课程、选择性必修课程D.必修课程、选择性必修课程【答案】B34、患者,男,28岁,患尿毒症晚期,拟接受肾移植手术。同卵双生兄弟间的器官移植属于A.自身移植B.同系移植C.同种移植D.异种移植E.胚胎组织移植【答案】B35、传染性单核细胞增多症的实验室特点是A.EBV抗体阴性B.外周血中无异形淋巴细胞C.嗜异性凝集试验阳性D.骨髓中单核细胞明显增加E.骨髓象中可见异形淋巴细胞,原始、幼稚淋巴细胞增多【答案】C36、与巨幼细胞性贫血无关的是A.中性粒细胞核分叶增多B.中性粒细胞核左移C.MCV112~159flD.MCH32~49pgE.MCHC0.32~0.36【答案】B37、冷球蛋白沉淀与复溶解的温度通常为A.-20℃,4℃B.-4℃,37℃C.-4℃,0℃D.0℃,37℃E.-20℃,37℃【答案】B38、细胞核均匀着染荧光,有些核仁部位不着色,分裂期细胞染色体可被染色出现荧光的是A.均质型B.斑点型C.核膜型D.核仁型E.以上均不正确【答案】A39、血小板膜糖蛋白Ⅰb与下列哪种血小板功能有关()A.黏附功能B.聚集功能C.分泌功能D.凝血功能E.维护血管内皮的完整性【答案】A40、义务教育阶段的数学课程应该具有()。A.基础性、普及性、发展性B.实践性、普及性、选拔性C.基础性、实践性、选拔性D.实践性、普及性、发展性【答案】A41、免疫标记电镜技术获得成功的关键是A.对细胞超微结构完好保存B.保持被检细胞或其亚细胞结构的抗原性不受损失C.选择的免疫试剂能顺利穿透组织细胞结构与抗原结合D.以上叙述都正确E.以上都不对【答案】D42、下列关于椭圆的叙述,正确的是()。A.平面内两个定点的距离之和等于常数的动点轨迹是椭圆B.平面内到定点和定直线距离之比大于1的动点轨迹是椭圆C.从椭圆的一个焦点出发的射线,经椭圆反射后通过椭圆的另一个焦点D.平面与圆柱面的截线是椭圆【答案】C43、下列关于高中数学课程变化的内容,说法不正确的是()。A.高中数学课程中的向量既是几何的研究对象,也是代数的研究对象B.高中数学课程中,概率的学习重点是如何计数C.算法是培养逻辑推理能力的非常好的载体D.集合论是一个重要的数学分支【答案】B44、激活凝血因子X的内源性激活途径一般开始于A.接触激活因子ⅫB.血小板聚集C.损伤组织因子ⅢD.磷脂酸粒表面阶段E.凝血酶原激活【答案】A45、粒细胞功能中具有共性的是()A.调理作用B.黏附作用C.吞噬作用D.杀菌作用E.中和作用【答案】C46、属于所有T细胞共有的标志性抗原的是A.CD2B.CD3C.CD4D.CD8E.CD20【答案】B47、设f(x)与g(x)是定义在同一区间增函数,下列结论一定正确的是()。A.f(x)+g(x)是增函数B.f(x)-g(x)是减函数C.f(x)g(x)是增函数D.f(g(x))是减函数【答案】A48、下列关于椭圆的论述,正确的是()。A.平面内到两个定点的距离之和等于常数的动点轨迹是椭圆B.平面内到定点和定直线距离之比小于1的动点轨迹是椭圆C.从椭圆的一个焦点出发的射线,经椭圆反射后通过椭圆另一个焦点D.平面与圆柱面的截线是椭圆【答案】C49、教学方法中的发现式教学法又叫()教学法A.习惯B.态度C.学习D.问题【答案】D50、临床实验室定量分析测定结果的误差应该是A.愈小愈好B.先进设备C.室内质控D.在允许误差内E.质控试剂【答案】D大题(共10题)一、函数单调性是刻画函数变化规律的重要概念,也是函数的一个重要性质。(1)请叙述函数严格单调递增的定义,并结合函数单调性的定义,说明中学数学课程中函数单调性与哪些内容有关(至少列举出两项内容);(7分)(2)请列举至少两种研究函数单调性的方法,并分别简要说明其特点。(8分)【答案】本题主要考查函数单调性的知识,考生对中学课程内容的掌握以及考生的教学设计能力。二、《义务教育数学课程标准(2011年版)》附录中给出了两个例子:例1.计算15×15,25×25,…,95×95,并探索规律。例2.证明例1所发现的规律。很明显例1计算所得到的乘积是一个三位数或者四位数,其中后两位数为25,而百位和千位上的数字存在这样的规律:1×2=2,2×3=6,3×4=12,…,这是“发现问题”的过程,在“发现问题”的基础上,需要尝试用语言符号表达规律,实现“提出问题”,进一步实现“分析问题”和“解决问题”。请根据上述内容,完成下列任务:(1)分别设计例1、例2的教学目标;(8分)(2)设计“提出问题”的主要教学过程;(8分)(3)设计“分析问题”和“解决问题”的主要教学过程;(7分)(4)设计“推广例1所探究的规律”的主要教学过程。(7分)【答案】本题主要考查考生对于新授课教学设计的能力。三、下列是三位教师对“等比数列概念”引入的教学片段。【教师甲】用实例引入,选了一个增长率的问题,有某国企随着体制改革和技术革新,给国家创造的利税逐年增加,下面是近几年的利税值(万元):1000,1100,1210,1331,……,如果按照这个规律发展下去,下一年会给国家创造多少利税呢?【教师乙】以具体的等比数列引入,先给出四个数列。1,2,4,8,16,…1,-1,1,-1,1,…-4,2,-1,…1,1,l,1,1,…由同学们自己去研究,这四个数列中,每个数列相邻两项之间有什么关系?这四个数列有什么共同点?【教师丙】以等差数列引入,开门见山,明确地告诉学生,“今天我们这节课学习等比数列,它与等差数列有密切的联系,同学们完全可以根据已学过的等差数列来研究等比数列。”什么样的数列叫等差数列?你能类比猜想什么是等比数列吗?列举出一两个例子,试说出它的定义。问题:(1)请分析三位教师教学引入片段的特点?(2)在(1)的基础上,谈谈你对课题引入的观点。【答案】四、数学的产生与发展过程蕴含着丰富的数学文化。(1)以“勾股定理”教学为例,说明在数学教学中如何渗透数学文化。(2)阐述数学文化对学生数学学习的作用。【答案】本题考查数学文化在数学教学过程中的渗透。数学文化包含数学思想、数学思维方式和数学相关历史材料等方面。五、在学习《有理数的加法》一课时,某位教师对该课进行了深入的研究,做出了合理的教学设计,根据该课内容完成下列任务:(1)本课的教学目标是什么(2)本课的教学重点和难点是什么(3)在情境引入的时候,某位老师通过一道实际生活中遇到的走路问题引出有理数的加法,让学生讨论得出有理数加法的两个数的符号,这样做的意义是什么【答案】(1)教学目标:知识与技能:通过实例,了解有理数的加法的意义,会根据有理数加法法则进行有理数的加法运算。过程与方法:用数形结合的思想方法得出有理数的加法法则,能运用有理数加法解决实际问题。情感态度与价值观:渗透数形结合的思想,培养运用数形结合的方法解决问题的能力,感知数学知识来源于生活,用联系发展的观点看待事物,逐步树立辩证唯物主义观点。(2)教学重点:了解有理数加法的意义,会根据有理数加法法则进行有理数的加法运算。教学难点:有理数加法中的异号两数进行加法运算。(3)这样做是为了让学生能直观感受到有理数的存在,通过贴近生活现实的实例进行讨论,得出结论会印象深刻,使学生对有理数的知识点掌握更加牢固。六、数学教育家弗赖登塔尔(Hans.Freudental)认为,人们在观察认识和改造客观世界的过程中,运用数学的思想和方法来分析和研究客观世界的种种现象,从客观世界的对象及其关系中抽象并形成数学的概念、法则和定理,以及为解决实际问题而构造的数学模型的过程,就是一种数学化的过程。(1)请举出一个实例,并简述其“数学化”的过程:(2)分析经历上述“数学化”过程对培养学生“发现问题,提出问题”以及“抽象概括”能力的作用。【答案】本题主要考查对“数学化”的理解。七、在“有理数的加法”一节中,对于有理数加法的运算法则的形成过程,两位教师的一些教学环节分别如下:【教师1】第一步:教师直接给出几个有理数加法算式,引导学生根据有理数的分类标准,将加法算式分成六类,即正数与正数相加,正数与负数相加,正数与0相加,0与0相加,负数与0相加,负数与负数相加。第二步:教师给出具体情境,分析两个正数相加,两个负数相加,正数与负数相加的情况。第三步:让学生进行模仿练习。第四步:教师将学生模仿练习的题目分成四类:同号相加,一个加数是0,互为相反数的两个数相加,异号相加。分析每一类题目的特点,得到有理数加法法则。【教师2】第一步:请学生列举一些有理数加法的算式。第二步:要求学生先独立运算,然后小组讨论,再全班交流。对于讨论交流的过程,教师提出具体要求:运算的结果是什么?你是怎么得到结果的?……讨论过程中,学生提出利用具体情境来解释运算的合理性……第三步:教师提出问题:“不考虑具体情境,基于不同情况分析这些算式的运算,有哪些规律?”……分组讨论后再全班交流,归纳得到有理数加法法则。问题:【答案】本题考查考生对基本数学思想方法的掌握及

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论