QC质量管理工具课件_第1页
QC质量管理工具课件_第2页
QC质量管理工具课件_第3页
QC质量管理工具课件_第4页
QC质量管理工具课件_第5页
已阅读5页,还剩88页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

QC质量管理工具主讲:严玲2014年1月11日《QC质量管理工具》特性要因图:CauseandEffectDiagram查检表:CheckSheet层别法:Stratification柏拉图:Paretodiagram直方图:Histograms散布图:ScatterDiagram控制图:ControlChart一、特性要因图

CauseandEffectDiagram1、简介又叫石川图,因日本的石川馨博士(Dr.KaoruIsshikawa)发明而得名又叫鱼骨图(FishboneDiagram),因形状像鱼骨而得名又叫因果图(CauseandEffectDiagram)

,这是国内的叫法如:尺寸变异测量人材料机器方法环境检查间隔方法调整给油日数量各部回转轴总动部振动油深度粘度切削条件深度压力速度种类冷却液形状刀具回转数温度空气调节照明电压组织弹性群体材质硬度测量方法测量工具2、主要用途1)

找出事故的原因及主要原因2)

找出解决问题的方法3)

管理、教育方面是一个定性分析的方法。使用头脑风暴法,集思广益3、特性要因图的5M1Eman(人员)machine(机器)material(材料)method(方法)environment(环境)measurement(测量)4、特性要因图的制作步骤(一)1)集合所有相关人员,人数最好为4-10人2)选一个黑板或白板或挂一张大白纸,准备几支色笔3)在所选工具的表面的右边画一个方框,再画一个大的箭头,里面写上不良项目,如:尺寸变异4)从5M1E几个大的方面去寻找原因。尺寸变异测量人材料机器方法环境4、特性要因图的制作步骤(二)5)使用头脑风暴法(Brainstorming):引导所有与会人员就影响要因发言,发言记录在黑板、白板或大白纸上。要点:发言过程中,不可批评或质疑,搜集尽可能多的原因尺寸变异测量人材料机器方法环境调整给油振动油切削条件冷却液刀具回转数调节照明电压组织弹性群体材质硬度测量工具测量方法4、特性要因图的制作步骤(三)6)经大家商磋后,找出主要影响因素,并进行标识(如:圈上红色圈)尺寸变异测量人材料机器方法环境检查间隔方法调整给油日数量各部回转轴总动部振动油深度粘度切削条件深度压力速度种类冷却液形状刀具回转数温度空气调节照明电压组织弹性群体材质硬度测量工具测量方法4、特性要因图的制作步骤(四)4、特性要因图的制作步骤(五)7)对主要因素进行排序,如:再圈上两圈、三圈或标上顺序号。8)将主要因素按顺序写下,并讨论相应的行动计划。9)特性要因图应由会议主席保留,以备后用。5、课堂练习由品管部主持,针对最近一个客户抱怨,进行特性要因分析二、查检表(Checksheets)用来检查某一事项或特性的符合性的一种图表。查检表分两类:1、点检用查检表2、记录用查检表2、主要用途日常管理用收集数据用改善管理用3、例子1)点检用查检表此类表在记录时只要做“有、没有”、“好、不好”和“满意、不满意”等的标记。典型用途:5S管理、厂纪厂规维护、内部稽核、设备保养等管理人员日常点检查检表如表123456…31人员服装好不好好工作场地机器保养……查检者日期项目2)记录用查检表(计数用)记录用查检表用来收集数据资料,通常使用划记法。典型应用:品管检验报告例表修整项目次数总数尺寸不良7表面斑点1装配不良2电镀不良1其他1思考

与自己工作有关的已有查检表有那些?

还需建立那些查检表以方便工作?三、层别法(Stratification)

层别法是所有手法中最基本的手法,即将各种各样的资料按不同的目的与需要分成不同的“类别”,使之方便以后的归纳、统计及分析。例子一般所使用的层别通常为“空间别”,如技术人员:不同专业别机器:不同机器别原料:不同供应商 作业条件:不同的温度、压力、湿度、作业场所…产品:不同规格、型号的产品别不同批别:不同时间生产的产品如:层别法:人员机器材料方法其它一组二组五组四组三组六组某汽车公司装配车间装配线是三班轮班,前周三班所生产的产品均为同一型号汽车

结果为:ABC产量606570不良率(%)0.40.30.5班别项目思考

列举与自己工作有关的使用层别法的例子。

四、柏拉图(Paretodiagram)又叫主次因素分析图又叫排列图,这是国内的叫法是美国品管大师朱兰博士(Juran)运用意大利经济学家柏拉图(Pareto)的统计发现应用于品管而创造出来的。20-80原则意大利经济学家柏拉图(Pareto)对世界的财富加以研究,发现80%的财富掌握在20%的人的手里,20%的财富为80%的人所有。朱兰发现20/80原则有广泛的适用性,并提出“重要少数、次要多数”。集中精力解决少数重要问题。20-80原则典型例证20%的产品创造80%的产值。80%的销售额来源于20%的客户。20%的因素引起80%的问题。20%的原材料占用80%的资金(ABC法)20%的员工创造80%的价值20%的人办掉了80%的离婚手续20%的人实现80%的心愿,80%的人只实现20%的心愿如414400-300-200-100-0-100-80-60-40-20%比率n=41447.1%21.7%15.8%10.9%4.5%84.6%柏拉图分析的步骤1)将要处理的事,以现象或原因加以层别。如某公司将上月生产的产品作出统计,总不良数409个,其中不良项目依次为:次序不良项目不良数(件)占不良总数比率(%)累积比率(%)1破损19547.12变形9021.768.83刮痕6515.884.64尺寸不良4510.995.55其他194.5100合计414100柏拉图分析的步骤2)横轴表示不良因素,纵轴可以表示件数,但最好以金额表示。3)决定搜集资料期间,尽可能定期,如周、月、季等。柏拉图分析的步骤4)各项目依据合计之大小依次自左至右排列在横轴上,绘制宽度相等的柱状图。47.1%21.7%15.8%10.9%4.5%400-300-200-100-0破损变形刮痕尺寸其它柏拉图分析的步骤5)连接累积曲线。破损变形刮痕尺寸其它

414400-300-200-100-0-100-80-60-40-20%比率n=41447.1%21.7%15.8%10.9%4.5%84.6%

由图可看出,该部门上个月产品不良最大的来自破损,占了47.1%,前三项占所有项目的80%以上,进行处理应以前三项为重点。次序不良项目不良数(件)占不良总数比率(%)累积比率(%)1脏污172混货73错货124电性能225弯脚667刮花变形24课堂练习常用统计知识X---单个样品的值n---样本容量,即一个样本所包含样品的个数X---样本平均值

(X1+X2+……+Xn)/nX---样本平均值的平均值X=K---一组样本的样本个数R---样本的极差

R=Xmax-XminS---样本的标准差

S=(X1-X)2+(X2-X)2+……+(Xn-X)2n-1标准差s表示数据的离散程度。标准偏差越小,数据离散程度越小。常用统计知识σ---分布的标准差(sigma)以参加人员的体重为例,进行计算练习.常用统计知识数据的种类计数值数据:以个数为基础的数据,如不良品数。计量值数据:可测量的、连续的数据,如尺寸不良率是计数值数据还是计量值数据?分布的概念一组数据所表现出来的统计规律分布的种类正态分布二项分布、泊松分布…当样本数足够大时,二项分布、泊松分布都趋向于正态分布。正态分布是最典型的分布,其形状象一口倒置的钟,故称钟形图。如:一组人的身高、体重等正态分布的特性68.3%95.4%99.73%u1σ-1σ2σ3σ-2σ-3σ3σ原理:99.73%的数据落在±3σ的范围内。五、直方图(Histograms)直方图是频数直方图的简称。它是用一系列宽度相等的矩形表示数据分布的图。矩形的宽度表示数据范围的间隔。矩形的高度表示在给定间隔内的数据频数。用途1)显示质量波动分布的状态;2)较直观地传递有关过程质量状况的信息;3)了解分布4)指出采取行动的必要5)量测矫正行动的效应05.515.525.535.545.550重量

0.510.520.530.540.550.535-30-25-20-15-10-5-0-XTn=100X=26.6克S=9.14克直方图LSLUSL例:某产品质量的重量规范要求为1000+50-0克。1)收集数据。作直方图的数据一般大于等于25个。本例在生产过程中收集了100个数据,列于表中如下:作图步骤数据表注:表中数据是实测数据减去1000克的简化值

测量单位(克)433424283840422928302822293236283218282027303522212834212024262936252012204638353322303626302814122029243439203134103228182214241830202119242428421882624223024324838281228273428321416163747242219402)确定数据的极差(R)。用原始数据中的最大值减去最小值求得。Xmax=48,最小值Xmin=1,所以极差R=48-1=47。3)确定组距(h)。先确定直方图的组数,然后以此组数去除极差,可得直方图每组的宽度,即组距。参照表这里取k=10N(数据)组数k50-1005-10100-2507-12250以上10-20组距(h)=R/k=47/10=4.7。取5。组距一般取测量单位的整数倍,以便于分组。4)确定各组的边界值。为避免出现数据在组的边界上,并保证数据中最大值和最小值包括在组内,组的边界值单位应取为最小测量单位的1/2。数据中最小值为1。第一组下边界为:1-0.5=0.5.第一组上边界为:第一组的下边界值加组距,即0.5+5=5.5第二组下边界值就是第一组的下边界加组距,即0.5+5=5.5。第二组上边界值就是第二组的下边界值加组距,即5.5+5=10.5。依此类推得出各组的边界值。5)编制频数分布表。把各个组上下边界值分别填入频数分布表内,并把数据表中的各个数据列入相应的组,(见下表)分布表:6)画直方图。在横轴上以每组对应的组距为底,以该组的频数为高,作直方图。注:每个矩形的宽度都是相等的。在直方图上标出公差范围(T)、样本量(n)、样本平均值(X)、和X的位置等。见下图05.515.525.535.545.550重量

0.510.520.530.540.550.535-30-25-20-15-10-5-0-XTn=100X=26.6克S=9.14克直方图TLTU直方图种类1)正常型说明过程处于统计控制状态(稳定状态)2)偏向型直方图它的形成可能由单向型公差要求或加工习惯等引起.3)双峰型直方图X它说明数据来自两个不同的总体,比如,来自两个工人,或两台设备加工的产品混为一批等.X4)孤岛型直方图它说明过程中可能发生原料混杂、操作了疏忽、短时间内有不熟练工人替岗、测量工具有误差等情况。5)平顶型直方图它说明生产过程可能受缓慢变化因素的影响,如刀具磨损等。6)锯齿型直方图可能是由于分组过多或测量数据不准等原因引起。6、对照规范进行分析比较当直方图图形为正常型时,还需对照规范进行比较,以判定过程满足规范要求的程度。常见的典型直方图如下:1)理想型TLTU图形对称分布,且两边各有一定裕量,是理想状态。2)偏心型TLTUMX调整分布中心X,使其与公差中心M重合。3)无富余型TLTUMX应采取措施,减少标准偏差。4)能力不足型TLTUMX已出现不合格品,应多方面采取措施,减少标准偏差。5)陡壁型TLTUMX应采取措施,使分布中心X与公差中心M重合。六、散布图(ScatterDiagrams)1、定义:散布图又称相关图,是用来表示两个或多个数据之间是否有相关性。回转数出力2、主要用途了解二个或多个数据之间的关系发现原因与结果的关系,为解决问题指明方向。3、散布图制作步骤1)收集资料(至少30组以上);2)确定适当的纵轴、横轴的刻度,划出坐标图;3)

将各组对应数据标在坐标上;4)最后必须填上资料的收集地点、时间、测量方法、制作者等项目4、分类和例子1)正相关(如回转数与力矩)回转数力矩负相关如油的粘度与温度油的粘度温度不相关如气压与气温气温气压弱正相关如身高与体重体重身高弱负相关如温度与步伐步伐温度七、控制图使用统计方法来监控制程的一种工具。UCL:UpperControlLimit上控制线

CL:CentralLimit中心线LCL:LowerControlLimit下控制线2、控制图的历史1924年美国的贝尔电话实验室的休哈特博士(Dr.W.A.Shewart)首先提出控制图。休哈特博士是统计过程控制理论(SPC,StatisticalProcessControl)的奠基人。所以控制图又叫休哈特图。3、制程波动制程的波动分为正常波动与异常波动正常波动:固有的、内在的波动,由系统误差引起异常波动:偶发的、不寻常的波动,由偶然误差引起4、控制图的作用识别并消除偶然误差,可保持制程的稳定性,使其处于受控状态。预防不合格品的出现。减少制程波动,提高制程能力。4、常规控制图的分类计量值控制图1)均值-极差控制图(X-R)2)均值-标准差控制图(X-s)3)中位数-极差控制图(X-R)4)单值-移动极差控制图(X-Rs)1)不合格品率控制图(P)2)不合格数控制图(np)3)单位缺陷数控制图(u)4)缺陷数控制图(c)计数值控制图X-R控制图系数表:样本nA2D3D440.7292.2850.5772.11460.4832.0070.4190.0761.92480.3730.1361.86490.3370.1841.8165、控制图的判断准则1)一点或多点落在控制界外。2)连续8点落在中心线的一侧。3)数据呈现规律性。6、X-R控制图的制作例:某手表厂为提高手表的质量,应用QC工具发现造成手表不合格的各种原因中“停摆”占第一位,为了解决这一问题,再用QC工具分析,发现造成停摆的主要原因是由于螺栓脱落,而螺栓脱落往往是由螺栓松动造成的,为此厂方决定应用控制图对装配作业中的螺栓扭矩进行过程控制。1)根据合理分组原则,取25组预备数据,见表:

2)计算各样本组的平均值Xi。如第一组样本的平均值为X1=154+174+164+166+1625=164.03)计算各样本组的极差Ri。例如,第一组样本的极差为R1=max{X1j}-min{X1j}=174-154=20(其余的参见表)4)计算样本总均值X与样本平均极差R。由于∑Xi=4081.40,∑R=357,故X=163.26,R=14.285)建立R控制图先计算R图的参数。当样本量n=5时,D4=2.114,D3=0,代入R图公式,得到

LCLR=D4*R=2.114*14.28=30.9CLR=R=14.28LCLR=D3R=0135791113151719212325n=5CL=14.28UCL=30.19LCL=0画出极差控制图(R图)6)建立X控制图。

n=5,由计量控制图参数表可查出,A2=0.577,将X=163.26,R=14.28代入X图的公式,得到:UCLX=X+A2R=163.26+0.577*14.28=171.50CLX=X=163.26LCLX=X-A2R=163.26-0.577*14.28=155.02依上划出x图,如下:135791113151719212325n=5CL=163.27UCL=171.51LCL=155.03

均值控制图(X图)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论