教师资格之中学数学学科知识与教学能力能力检测精华B卷附答案_第1页
教师资格之中学数学学科知识与教学能力能力检测精华B卷附答案_第2页
教师资格之中学数学学科知识与教学能力能力检测精华B卷附答案_第3页
教师资格之中学数学学科知识与教学能力能力检测精华B卷附答案_第4页
教师资格之中学数学学科知识与教学能力能力检测精华B卷附答案_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

教师资格之中学数学学科知识与教学能力能力检测精华B卷附答案

单选题(共50题)1、创立解析几何的主要数学家是().A.笛卡尔,费马B.笛卡尔,拉格朗日C.莱布尼茨,牛顿D.柯西,牛顿【答案】A2、重症肌无力的自身抗原是A.甲状腺球蛋白B.乙酰胆碱受体C.红细胞D.甲状腺细胞表面TSH受体E.肾上腺皮质细胞【答案】B3、细胞核内出现颗粒状荧光,分裂期细胞染色体无荧光显示的是A.均质型B.斑点型C.核膜型D.核仁型E.以上均不正确【答案】B4、血小板膜糖蛋白Ⅰb与下列哪种血小板功能有关()A.黏附功能B.聚集功能C.分泌功能D.凝血功能E.维护血管内皮的完整性【答案】A5、临床检测血清,尿和脑脊液中蛋白质含量的常用仪器设计原理是A.化学发光免疫测定原理B.电化学发光免疫测定原理C.酶免疫测定原理D.免疫浊度测定原理E.免疫荧光测定原理【答案】D6、《义务教育课程次标准(2011年版)》“四基”中“数学的基本思想”,主要是:①数学抽象的思想;②数学推理的思想;③数学建模的思想。其中正确的是()。A.①B.①②C.①②③D.②③【答案】C7、下列语句是命题的是()。A.①②B.①③C.②③D.③④【答案】D8、在现代免疫学中,免疫的概念是指A.排斥抗原性异物B.清除自身突变、衰老细胞的功能C.识别并清除从外环境中侵入的病原生物D.识别和排斥抗原性异物的功能E.机体抗感染而不患病或传染疾病【答案】D9、儿茶酚胺是A.激活血小板物质B.舒血管物质C.调节血液凝固物质D.缩血管物质E.既有舒血管又能缩血管的物质【答案】D10、Ⅳ型超敏反应A.由IgE抗体介导B.单核细胞增高C.以细胞溶解和组织损伤为主D.T细胞与抗原结合后导致的炎症反应E.可溶性免疫复合物沉积【答案】D11、纤溶酶的主要作用是水解()A.因子ⅤB.因子ⅡaC.因子ⅫD.因子Ⅰ和ⅠaE.因子Ⅳ【答案】D12、Westgard质控处理规则的应用可以找出的误差是A.系统误差B.随机误差C.系统误差和随机误差D.偶然误差E.以上都不是【答案】C13、抗凝血酶Ⅲ活性测定多采用A.凝固法B.透射免疫比浊法和散射免疫比浊法C.免疫学法D.发色底物法E.以上都是【答案】D14、“以学生发展为本”中“发展”的含义包括全体学生的发展、全面和谐的发展、终身持续的发展、个人特长的发展以及()的发展。A.科学B.可持续性C.活泼主动D.身心健康【答案】C15、与意大利传教士利玛窦共同翻译了《几何原本》(Ⅰ—Ⅵ卷)的我国数学家是()。A.徐光启B.刘徽C.祖冲之D.杨辉【答案】A16、B细胞识别抗原的受体是A.Fc受体B.TCRC.SmIgD.小鼠红细胞受体E.C3b受体【答案】C17、对脾功能亢进的诊断较有价值的检查是()A.全血细胞计数B.骨髓穿刺涂片检查C.脾容积测定D.血细胞生存时间测定E.尿含铁血黄素试验【答案】D18、在学习数学和应用数学的过程中逐步形成和发展的数学学科核心素养包括:()、直观想象、数学运算、数据分析等。A.分类讨论B.数学建模C.数形结合D.分离变量【答案】B19、经台盼兰染色后,活细胞呈A.蓝色B.不着色C.紫色D.红色E.绿色【答案】B20、《义务教育数学课程标准(2011年版)》提出,“数感”感悟的对象是()。A.数与量、数量关系、口算B.数与量、数量关系、笔算C.数与量、数量关系、简便运算D.数与量、数量关系、运算结果估计【答案】D21、下列哪种疾病做PAS染色时红系呈阳性反应A.再生障碍性贫血B.巨幼红细胞性贫血C.红白血病D.溶血性贫血E.巨幼细胞性贫血【答案】C22、血小板膜糖蛋白Ⅰb与下列哪种血小板功能有关()A.黏附功能B.聚集功能C.分泌功能D.凝血功能E.血块收缩功能【答案】A23、关于心肌梗死,下列说法错误的是A.是一种常见的动脉血栓性栓塞性疾病B.血管内皮细胞损伤的检验指标增高C.生化酶学和血栓止血检测是诊断的金指标D.较有价值的观察指标是分子标志物检测E.血小板黏附和聚集功能增强【答案】C24、标准定值血清可用来作为A.室间质控B.室内检测C.变异系数D.平均值E.标准差【答案】B25、临床有出血症状且APTT正常和PT延长可见于A.痔疮B.FⅦ缺乏症C.血友病D.FⅩⅢ缺乏症E.DIC【答案】B26、血小板聚集诱导剂是A.血栓收缩蛋白B.ADP、血栓烷AC.αD.GPⅡb或GPⅠaE.蛋白C.血栓调节蛋白、活化蛋白C抑制物【答案】B27、创新意识的培养是现代数学教育的基本任务,应体现在数学教与学的过程之中,下面表述中不适合在教学中培养学生创新意识的是()。A.发现和提出问题B.寻求解决问题的不同策略C.规范数学书写D.探索结论的新应用【答案】C28、已知向量a与b的夹角为π/3,且|a|=1,|b|=2,若m=λa+b与n=2a-b互相垂直,则λ的为()。A.-2B.-1C.1D.2【答案】D29、利用细胞代谢变化作为增殖指征来检测细胞因子生物活性的方法称为A.放射性核素掺入法B.NBT法C.细胞毒测定D.MTT比色法E.免疫化学法【答案】D30、设f(x)=acosx+bsinx是R到R的函数,V={f(x)∣f(x)=acosx+bsinx,a,b∈R}是线形空间,则V的维数是()。A.1B.2C.3D.∞【答案】A31、《九章算数注》的作者是()。A.刘徽B.秦九韶C.杨辉D.赵爽【答案】A32、“等差数列”和“等比数列”的概念关系是()A.交叉关系B.同一关系C.属种关系D.矛盾关系【答案】A33、患者,女性,30岁,3年前无明显诱因出现巩膜发黄,全身乏力,常感头昏,皮肤瘙痒,并多次出现酱油色尿。近3个月来,乏力加重,无法正常工作而入院。体格检查发现重度贫血,巩膜黄染,肝肋下2cm,脾平脐,其余未见异常。血常规显示WBC9.0×10A.肾功能测定B.肝功能测定C.LDH、总胆红素、间接胆红素、血红蛋白尿等测定D.补体测定E.红细胞沉降率测定【答案】C34、移植排斥反应属于A.Ⅰ型超敏反应B.Ⅱ型超敏反应C.Ⅲ型超敏反应D.Ⅳ型超敏反应E.以上均正确【答案】D35、弥散性血管内凝血常发生于下列疾病,其中哪项不正确A.败血症B.肌肉血肿C.大面积烧伤D.重症肝炎E.羊水栓塞【答案】B36、教学方法中的发现式教学法又叫()教学法A.习惯B.态度C.学习D.问题【答案】D37、在新一轮的数学教育改革中,逐渐代替了数学教学大纲,成为数学教育指导性文件的是()。A.数学教学方案B.数学课程标准C.教学教材D.数学教学参考书【答案】B38、乙酰胆碱受体的自身抗体与上述有关的自身免疫病是A.慢性活动性肝炎B.抗磷脂综合征C.重症肌无力D.原发性小血管炎E.毒性弥漫性甲状腺肿(Gravesdisease)【答案】C39、属于所有T细胞共有的标志性抗原的是A.CD2B.CD3C.CD4D.CD8E.CD20【答案】B40、男,45岁,因骨盆骨折住院。X线检查发现多部位溶骨性病变。实验室检查:骨髓浆细胞占25%,血沉50mm/h,血红蛋白为80g/L,尿本周蛋白阳性,血清蛋白电泳呈现M蛋白,血清免疫球蛋白含量IgG8g/L、IgA12g/L、IgM0.2g/L。目前最常用的鉴定M蛋白类型的方法为A.免疫固定电泳B.免疫扩散C.ELISAD.比浊法E.对流电泳【答案】A41、下列对向量学习意义的描述:A.1条B.2条C.3条D.4条【答案】D42、集合A={0,2,a2},B={0,1,a),若A∩B={0,1},则实数a的值为()。A.0B.-1C.1D.-1或1【答案】B43、已知两圆的半径分别为2和3,圆心距为5,则这两圆的位置关系是()。A.外离B.外切C.相交D.内切【答案】B44、最常见的Ig缺陷病是A.选择性IgA缺陷病B.先天性胸腺发育不全综合征C.遗传性血管神经性水肿D.慢性肉芽肿病E.阵发性夜间血红蛋白尿【答案】A45、以下哪些不属于学段目标中情感与态度方面的。()A.感受数学思考过程的合理性。B.感受数学思考过程的条理性和数学结论的确定性。C.获得成功的体验,有学好数学的信心。D.在解决问题过程中,能进行简单的、有条理的思考。【答案】D46、男性,29岁,发热半个月。体检:两侧颈部淋巴结肿大(约3cm×4cm),肝肋下2cm,脾肋下2.5cm,胸骨压痛,CT显示后腹膜淋巴结肿大。检验:血红蛋白量85g/L,白细胞数3.5×10A.Ⅰ期B.Ⅱ期C.Ⅲ期D.Ⅳ期E.Ⅷ期【答案】D47、临床实验室定量分析测定结果的误差应该是A.愈小愈好B.先进设备C.室内质控D.在允许误差内E.质控试剂【答案】D48、《义务教育教学课程标准(2011年版)》设定了九条基本事实,下列属于基本事实的是()。A.两条平行线被一条直线所截,同位角相等B.两平行线间距离相等C.两条平行线被一条直线所截,内错角相等D.两直线被平行线所截,对应线段成比例【答案】D49、男性,10岁,发热1周,并有咽喉痛,最近两天皮肤有皮疹。体检:颈部及腋下浅表淋巴结肿大,肝肋下未及,脾肋下1cm。入院时血常规结果为:血红蛋白量113g/L:白细胞数8×10A.慢性淋巴细胞白血病B.传染性单核细胞增多症C.上呼吸道感染D.恶性淋巴瘤E.急性淋巴细胞白血病【答案】B50、增生性贫血时不出现的是()A.血片中可见形态、染色、大小异常的红细胞B.外周血红细胞、血红蛋白减低C.血片中原粒细胞>5%D.外周血网织红细胞>5%E.血片中可出现幼红细胞,多染性或嗜碱性细胞【答案】C大题(共10题)一、案例:下面是一道鸡兔同笼问题:一群小兔一群鸡,两群合到一群里,要数腿共48,要数脑袋整l7,多少小兔多少鸡解法一:用算术方法:思路:如果没有小兔,那么小鸡为17只,总的腿数应为34条,但现在有48条腿,造成腿的数目不够是由于小兔的数目是O,每有一只小兔便会增加两条腿,敌应有(48—17×2)÷2=7只小兔。相应地,小鸡有10只。解法二:用代数方法:可设有x只小鸡,y只小兔,则x+y=17①;2x+4y=48②。将第一个方程的两边同乘以-2加到第二个方程中去,得x+y=17;(4-2)y=48-17x2。解上述第二个方程得y=7,把y=7代入第一个方程得x=10。所以有10只小鸡.7只小兔。问题:(1)试说明这两种解法所体现的算法思想;(10分)(2)试说明这两种算法的共同点。(10分)【答案】(1)解法一所体现的算法是:S1假设没有小兔.则小鸡应为n只;S2计算总腿数为2n只;S3计算实际总腿数m与假设总腿数2n的差值m-2n;S4计算小兔只数为(m-2n)÷2;S5小鸡的只数为n-(m-2n)÷2;解法二所体现的算法是:S1设未知数S2根据题意列方程组;S3解方程组:S4还原实际问题,得到实际问题的答案。(2)不论在哪一种算法中,它们都是经有限次步骤完成的,因而它们体现了算法的有穷性。在算法中,第一步都能明确地执行,且有确定的结果,因此具有确定性。在所有算法中,每一步操作都是可以执行的,也就是具有可行性。算法解决的都是一类问题,因此具有普适性。二、在“有理数的加法”一节中,对于有理数加法的运算法则的形成过程,两位教师的一些教学环节分别如下:【教师1】第一步:教师直接给出几个有理数加法算式,引导学生根据有理数的分类标准,将加法算式分成六类,即正数与正数相加,正数与负数相加,正数与0相加,0与0相加,负数与0相加,负数与负数相加。第二步:教师给出具体情境,分析两个正数相加,两个负数相加,正数与负数相加的情况。第三步:让学生进行模仿练习。第四步:教师将学生模仿练习的题目分成四类:同号相加,一个加数是0,互为相反数的两个数相加,异号相加。分析每一类题目的特点,得到有理数加法法则。【教师2】第一步:请学生列举一些有理数加法的算式。第二步:要求学生先独立运算,然后小组讨论,再全班交流。对于讨论交流的过程,教师提出具体要求:运算的结果是什么?你是怎么得到结果的?……讨论过程中,学生提出利用具体情境来解释运算的合理性……第三步:教师提出问题:“不考虑具体情境,基于不同情况分析这些算式的运算,有哪些规律?”……分组讨论后再全班交流,归纳得到有理数加法法则。问题:【答案】本题考查考生对基本数学思想方法的掌握及应用。三、《义务教育数学课程标准(2011年版)》附录中给出了两个例子:例1.计算15×15,25×25,…,95×95,并探索规律。例2.证明例1所发现的规律。很明显例1计算所得到的乘积是一个三位数或者四位数,其中后两位数为25,而百位和千位上的数字存在这样的规律:1×2=2,2×3=6,3×4=12,…,这是“发现问题”的过程,在“发现问题”的基础上,需要尝试用语言符号表达规律,实现“提出问题”,进一步实现“分析问题”和“解决问题”。请根据上述内容,完成下列任务:(1)分别设计例1、例2的教学目标;(8分)(2)设计“提出问题”的主要教学过程;(8分)(3)设计“分析问题”和“解决问题”的主要教学过程;(7分)(4)设计“推广例1所探究的规律”的主要教学过程。(7分)【答案】本题主要考查考生对于新授课教学设计的能力。四、下列是三位教师对“等比数列概念”引入的教学片段。【教师甲】用实例引入,选了一个增长率的问题,有某国企随着体制改革和技术革新,给国家创造的利税逐年增加,下面是近几年的利税值(万元):1000,1100,1210,1331,……,如果按照这个规律发展下去,下一年会给国家创造多少利税呢?【教师乙】以具体的等比数列引入,先给出四个数列。1,2,4,8,16,…1,-1,1,-1,1,…-4,2,-1,…1,1,l,1,1,…由同学们自己去研究,这四个数列中,每个数列相邻两项之间有什么关系?这四个数列有什么共同点?【教师丙】以等差数列引入,开门见山,明确地告诉学生,“今天我们这节课学习等比数列,它与等差数列有密切的联系,同学们完全可以根据已学过的等差数列来研究等比数列。”什么样的数列叫等差数列?你能类比猜想什么是等比数列吗?列举出一两个例子,试说出它的定义。问题:(1)请分析三位教师教学引入片段的特点?(2)在(1)的基础上,谈谈你对课题引入的观点。【答案】五、下面给出“变量与函数”一节的教学片段:创设情境,导入新课教师:同学们,从小学步入初中到现在的八年级这段时间里,你发生了哪些变化学生:年龄增长了;个子长高了;知识增多了;体重增加了;课教学设计中存在的不足之处,以及在进行知识技能教学时应该坚持的基本原则。【答案】本节课的教学设计对于知识技能教学属于反面案例,主要不足之处有两点:(1)创设情境的目的应该为当节课的教学内容服务,本节课应该指向引入“变量”的概念,教师在引入环节中,只注重了变量的特征之一“变”,却忽视了“在一个变化过程中”这一变量的前提条件,而这一条件对学生进一步理解变量及函数的概念至关重要.(2)一个新的数学概念的建立必须经历一个由粗浅到精致,由不完整到严谨的过程,同时要注重引导学生理解其中的关键词的含义,还应通过适当数量的正反例揭示概念的内涵与外延,否则概念的建立是没有联系的,也是不稳定的.同时,数学概念的理解应该让学生用自己的语言复述,而不是简单的死记硬背.在进行知识技能教学时应该坚持的基本原则有:(1)体现生成性;(2)展现建构性;(3)注重过程性;(4)彰显主体性;(5)突出目标性.六、以《普通高中课程标准实验教科书·数学1》(必修)第一章“集合与函数概念”的设计为例,回答下列问题:(1)从分析集合语言的意义入手,说明为什么把它安排在高中数学的起始章;(6分)(2)说明高中阶段对函数概念的处理方法;(4分)(3)给出本章课程的学习目标;(8分)(4)简要给出集合主要内容的教学设计思路与方法。(12分)【答案】七、函数单调性是刻画函数变化规律的重要概念,也是函数的一个重要性质。(1)请叙述函数严格单调递增的定义,并结合函数单调性的定义,说明中学数学课程中函数单调性与哪些内容有关(至少列举出两项内容);(7分)(2)请列举至少两种研究函数单调性的方法,并分别简要说明其特点。(8分)【答案】本题主要考查函数单调性的知识,考生对中学课程内容的掌握以及考生的教学设计能力。八、数据分析素养是课标要求培养的数学核心素养之一。(1)请说明数据分析的内涵,并简述数据分析的基本过程;(2)请在具体教学实践上说明如何培养学生的数据分析素养。【答案】九、数学的产生与发展过程蕴含着丰富的数学文化。(1)以“勾股定理”教学为例,说明在数学教学中如何渗透数学文化。(2)阐述数学文化对学生数学学习的作用。【答案】本题考查数学文化在数学教学过程中的渗透。数学文化包含数学思想、数学思维方式和数学相关历史材料等方面。一十、案例:面对课堂上出现的各种各样的意外生成,教师如何正确应对,如何让这些生成为我们高效的课堂教学服务.如何把自己课前的预设和课堂上的生成有效融合,从而实现教学效果的最大化.这是教师时刻面临的问题。在一次听课中有下面的一个教学片段:教师在介绍完中住线的概念后,布置了一个操作探究活动。师:大家把手

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论