高考全国甲卷:《理科数学》2018年考试真题与答案解析_第1页
高考全国甲卷:《理科数学》2018年考试真题与答案解析_第2页
高考全国甲卷:《理科数学》2018年考试真题与答案解析_第3页
高考全国甲卷:《理科数学》2018年考试真题与答案解析_第4页
高考全国甲卷:《理科数学》2018年考试真题与答案解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

-5-高考精品文档高考全国甲卷理科数学·2018年考试真题与答案解析同卷地区贵州省、四川省、云南省西藏自治区、广西自治区高考全国甲卷:《理科数学》2018年考试真题与答案解析一、选择题本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知集合,,则()A.B.C.D.答案:C2.()A.B.C.D.答案:D3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()A.B.C.D.答案:A4.若,则()A.B.C.D.答案:B5.的展开式中的系数为()A.10B.20C.40D.80答案:C6.直线分别与轴,轴交于,两点,点在圆上,则面积的取值范围是()A.B.C.D.答案:A7.函数的图像大致为()A.B.C.D.答案:D8.某群体中的每位成员使用移动支付的概率都为,各成员的支付方式相互独立,设为该群体的10位成员中使用移动支付的人数,,,则()。A.0.7B.0.6C.0.4D.0.3答案:B9.的内角的对边分别为,,,若的面积为,则()A.B.C.D.答案:C10.设是同一个半径为4的球的球面上四点,为等边三角形且其面积为,则三棱锥体积的最大值为A.B.C.D.答案:B11.设是双曲线()的左,右焦点,是坐标原点.过作的一条渐近线的垂线,垂足为.若,则的离心率为A.B.2C.D.答案:C12.设,,则A.B.C.D.答案:B二、填空题本题共4小题,每小题5分,共20分。13.已知向量,,.若,则________.答案:0.514.曲线在点处的切线的斜率为,则________.答案:﹣315.函数在的零点个数为________.答案:316.已知点和抛物线,过的焦点且斜率为的直线与交于,两点.若,则________.答案:2三、解答题解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每题12分,每个试题考生都必须作答。第22、23题为选考题,每题10分,考生根据要求作答。(一)必考题17.等比数列中,.(1)求的通项公式;(2)记为的前项和.若,求.答案:(1)解答过程如下;设的公比为,由题设得.由已知得,解得(舍去),或.故或.(2)解答过程如下;若,则.由,得,此方程没有正整数解.若,则.由得,解得.综上,.18.某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人。第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;(2)求40名工人完成生产任务所需时间的中位数,并将完成生产任务所需时间超过和不超过的工人数填入下面的列联表:超过不超过第一种生产方式第二种生产方式(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?附:,答案:(1)解答过程如下;第二种生产方式的效率更高.理由如下:(i)由茎叶图可知:用第一种生产方式的工人中,有75%的工人完成生产任务所需时间至少80分钟,用第二种生产方式的工人中,有75%的工人完成生产任务所需时间至多79分钟.因此第二种生产方式的效率更高.(ii)由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间的中位数为85.5分钟,用第二种生产方式的工人完成生产任务所需时间的中位数为73.5分钟.因此第二种生产方式的效率更高.(iii)由茎叶图可知:用第一种生产方式的工人完成生产任务平均所需时间高于80分钟;用第二种生产方式的工人完成生产任务平均所需时间低于80分钟,因此第二种生产方式的效率更高.(iv)由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间分布在茎8上的最多,关于茎8大致呈对称分布;用第二种生产方式的工人完成生产任务所需时间分布在茎7上的最多,关于茎7大致呈对称分布,又用两种生产方式的工人完成生产任务所需时间分布的区间相同,故可以认为用第二种生产方式完成生产任务所需的时间比用第一种生产方式完成生产任务所需的时间更少,因此第二种生产方式的效率更高.以上给出了4种理由,考生答出其中任意一种或其他合理理由均可得分.(2)解答过程如下;由茎叶图知.列联表如下:超过不超过第一种生产方式155第二种生产方式515(3)解答过程如下由于,所以有99%的把握认为两种生产方式的效率有差异.19.如图,边长为2的正方形所在的平面与半圆弧所在平面垂直,是上异于,的点.(1)证明:平面平面;(2)当三棱锥体积最大时,求面与面所成二面角的正弦值.答案:(1)证明过程如下;由题设知,平面CMD⊥平面ABCD,交线为CD.因为BC⊥CD,BC平面ABCD,所以BC⊥平面CMD,故BC⊥DM.因为M为上异于C,D的点,且DC为直径,所以DM⊥CM.又BCCM=C,所以DM⊥平面BMC.而DM平面AMD,故平面AMD⊥平面BMC.(2)解答过程如下;以D为坐标原点,的方向为x轴正方向,建立如图所示的空间直角坐标系D−xyz.当三棱锥M−ABC体积最大时,M为弧CD的中点.由题设得,设是平面MAB的法向量,则即可取.是平面MCD的法向量,因此,,所以面MAB与面MCD所成二面角的正弦值是.20.已知斜率为的直线与椭圆交于,两点,线段的中点为.(1)证明:;(2)设为的右焦点,为上一点,且.证明:,,成等差数列,并求该数列的公差.答案:(1)证明过程如下;设,则.两式相减,并由;得.由题设知,于是.①由题设得,故.(2)解答过程如下;由题意得,设,则.由(1)及题设得.又点P在C上,所以,从而,.于是.同理.所以.故,即成等差数列.设该数列的公差为d,则.②将代入①得.所以l的方程为,代入C的方程,整理得.故,代入②解得.所以该数列的公差为或.21.已知函数.(1)若,证明:当时,;当时,;(2)若是的极大值点,求.答案:(1)证明过程如下;当时,,.设函数,则.当时,;当时,.故当时,,且仅当时,,从而,且仅当时,.所以在单调递增.又,故当时,;当时,.(2)解答过程如下;(i)若,由(1)知,当时,,这与是的极大值点矛盾.(ii)若,设函数.由于当时,,故与符号相同.又,故是的极大值点当且仅当是的极大值点.如果,则当,且时,,故不是的极大值点.如果,则存在根,故当,且时,,所以不是的极大值点.如果,则.则当时,;当时,.所以是的极大值点,从而是的极大值点综上,.(二)选考题请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分。22.[选修4—4:坐标系与参数方程]在平面直角坐标系中,的参数方程为(为参数),过点且倾斜角为的直线与交于两点.(1)求的取值范围;(2)求中点的轨迹的参数方程.答案:(1)解答过程如下:圆O的直角坐标方程为.当时,与圆O交于两点.当时,记,则的方程为.与圆O交于两点当且仅当,解得或,即或.综上,的取值范围是.(2)解答过程如下;的参数方程为为参数,.设,,对应的参数分别为,,,则,且,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论