




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
数学归纳法的课标分析一、教学目标1.通过对具体问题的解决思路探寻,了解数学归纳法产生的根源及其无穷递推的本质,在此基础上归纳概括出数学归纳法证题的两个步骤.2.体会数学归纳法的思想,会用数学归纳法证明一些简单的恒等式.3.了解通过“观察”“归纳”“证明”来发现定理的基本思路.二、难点或疑点:但数学归纳法作为一种证明的方法,且不论其方法的结构形式,运用技巧,就是对其自身的可靠性,学生都有一定的疑虑,具体可能会体现在以下一些方面:1.数学归纳法所要解决的是无穷多个命题P(1),P(2),P(3),…,P(n),…恒为真的问题,由此造学生在理解上的两点困难:(1)对“无穷”的模糊认知和神秘感;(2)对于一个关于正整数n的命题P(n),会难以将其看作是一个随自变量n变化的“命题值函数”.2.为什么要引进数学归纳法?验证为何不可行?3.数学归纳法的两步骤中,对第二步的认识往往难以到位.将解决由P(k)到P(k+1)的传递性问题,误解为证明P(k+1)的真实性.由此造成对证明中何以用“假设”的不理解.4.数学归纳法的第二步中由k到k+1的递推性应保证k从第一个值时的任意一个整数都能成立,由此只要第一个值成立,就能确保可以一直递推下去.5.数学归纳法中的递推是一种无穷尽的动态过程,学生对于不断反复地运用步骤二来进行推理的模式缺乏清晰的认知.数学归纳法运用时对起点可作适当的偏移,对第二步的证明有一定的技巧,这些都可以留置下一课进行深入分析,本课侧重解决对数学归纳法基本原理和两步骤的初步理解.突破的关键:由于中学阶段对数学归纳法的教学缺乏理论基础,因此学习的关键是通过对具体问题的解决,提炼出方法的一般模式。在经历问题的提出、思考的过程,通过具体的事例、直观的模型中加以抽象概括,从而逐步加深对数学归纳法原理的理解。《数学归纳法》教材分析一.数学归纳法的本质、地位、作用分析《数学归纳法》是人教社全日制普通高级中学教科书数学第选修II第二章第三节的内容,本节共三课时,这是第一课时,主要内容是数学归纳法理解与简单应用。数学归纳法体现了递推的思想,数学归纳法的本质就是利用递推思想去证题的一种方法。1.数学归纳法在教材中的地位与作用数学归纳法是证明与正整数有关命题的一种重要的证明方法,通过对数学归纳法的学习,可对中学数学中的许多重要结论,如等差、等比数列的通项公式及前n项和公式、二项式定理以及中小学很多思维上开拓创新的题目可以进行很好地证明,使很多数学结论更加严密,也为后继学习打下了良好的基础。2.数学归纳法对思维发展的地位与作用人类对问题的研究,结论的发现认同,思维流程通常是观察→归纳→猜想→证明。猜想的结论对不对,证明是尤为关键的。运用数学归纳法解题时,有助于学生对等式的恒等变形,不等式的放缩,数、式、形的构造与转化等知识加强训练与掌握。对数学归纳法原理的理解,蕴含着递归与递推,归纳与推理,特殊到一般,有限到无限等数学思想和方法,对思维的发展起到了完善与推动的作用。二.教学目标分析知识与技能:1.了解由归纳法得出的结论具有不可靠性,理解数学归纳法的原理与本质;2.掌握数学归纳法证题的两个步骤及其简单应用;3.培养学生观察、探究、分析、论证的能力,体会类比的数学思想.过程与方法:1.创设情境,激发学生学习兴趣,让学生体验知识的发生与发展过程;2.通过对数学归纳法的学习、应用,逐步体验观察、归纳、猜想、论证的过程,培养学生严谨的逻辑推理意识,并初步掌握论证方法;3.通过发现问题、提出问题、分析问题、解决问题的过程,培养学生创新能力.情感、态度与价值观:1.通过对数学归纳法原理的探究,培养学生严谨的科学态度和勇于探索的精神;2.通过对数学归纳法原理和本质的讨论,培养学生团结协作的精神;3.通过置疑与探究,培养学生独立的人格与敢于创新的精神;数学归纳法的学情分析学生已有的认知基础(1)对正整数的特点的有一定的感性认识;(2)对“无穷”的概念有一定的认识和兴趣;(3)在数列的学习中对递推思想有一定的体会;(4)在生活经验中接触到一些具有递推性质的事实;(5)了解归纳法、演绎法等推理方法以及分析法、综合法等证明方法,具有了一定的逻辑知识的基础.学生在学习中的疑惑:运用数学归纳法证明与正整数有关的命题时,学生疑虑重重.为什么必须是两步呢?假设成立有依据吗?学生学习数学归纳法时对这两点不能完全理解,只能依葫芦画瓢,在教学设计中,应设法进行强化数学归纳法产生过程的教学,由学生对多米诺骨牌游戏的原理进行讨论并自己提炼概括,然后由多米诺骨牌游戏的原理类比到数学归纳法的两步,并对数学归纳法的两步进行理论上的证明,加深了学生对数学归纳法的两步的理解,使学生对数学归纳法的理解更有深度和广度.由此不难确定本课教学重点为数学归纳法产生过程的分析,初步理解数学归纳法的原理;教学难点是数学归纳法中递推思想的理解,及用数学归纳法证明命题的两个步骤的理解.运用数学归纳法证明与正整数有关的数学命题,两个步骤缺缺一不可.数学归纳法【教材分析】1、教学内容:数学归纳法是人教社全日制普通高级中学教科书数学选修2-2第二章第3节的内容,根据课标要求,本书该节共2课时,这是第一课时,其主要内容是数学归纳法的原理及其应用。2、地位作用:在已经学习了不完全归纳法的基础上,介绍了数学归纳法,它是一种用于关于正整数命题的直接证法。教材通过剖析生活实例中蕴含的思维过程揭示数学思想方法,即借助“多米诺骨牌”的设计思想,揭示数学归纳法依据的两个条件及它们之间的关系。【教学目标】1、知识与技能:(1)了解归纳法,理解数学归纳法的原理与实质,掌握数学归纳法证题的两个步骤。(2)会证明简单的与正整数有关的命题。2、过程与方法:努力创设课堂愉悦的情境,使学生处于积极思考,大胆质疑的氛围,提高学生学习兴趣和课堂效率,让学生经历知识的构建过程,体会类比的数学思想。3、情感、态度与价值观:通过本节课的教学,使学生领悟数学思想和辩证唯物主义观点,激发学生学习热情,提高学生数学学习的兴趣,培养学生大胆猜想,小心求证的辩证思维素质,以及发现问题、提出问题的意见和数学交流能力。【教学重点】借助具体实例了解数学归纳法的基本思想,掌握它的基本步骤,运用它证明一些简单的与正整数n(n取无限多个值)有关的数学命题。【教学难点】(1)学生不易理解数学归纳法的思想实质,具体表现在不了解第二个步骤的作用,不易根据归纳假设作出证明。(2)运用数学归纳法时,在“归纳递推”的步骤中发现具体问题的递推关系。(3)“归纳——猜想——证明”的方法技巧【教学方法】运用类比启发探究的数学方法进行教学;【教学手段】借助多媒体呈现多米诺骨牌等生活素材辅助课堂教学;【教学程序】第一阶段:创设问题情境,启动学生思维情境1、数列通过对前4项归纳,猜想——可以让学生通过数列的知识加以验证——“不完全归纳有时是正确的”。通过对上述情况的探究可以发现用“不完全归纳法”得到的结论不一定可靠。为了寻求一种能够证明与正整数有关的数学问题的方法,从而引入本节课的新课内容一数学归纳法。第二阶段:搜索生活实例,激发学习兴趣1、“多米诺骨牌”游戏动画演示:探究“多米诺骨牌”全部倒下的条件引导学生思考并分析“多米诺骨牌”全部倒下的两个条件;①第一块骨牌倒下;②任意相邻的两块骨牌,前一块倒下一定导致后一块倒下。强调条件②的作用:是一种递推关系(第k块倒下,使第k+1块倒下)。2、类比“多米诺骨牌”的原理来验证情境1中对于通项公式的猜想。“多米诺骨牌”原理①第一块骨牌倒下;②若第k块倒下,则使得第k+1块倒下验证猜想↓↓①验证猜想成立②如果时,猜想成立。即,则当时,即时猜想成立3、引导学生概括,形成科学方法证明一个与正整数有关的命题关键步骤如下:(1)证明当n取第一个值时结论正确;(归纳奠基)(2)假设当n=k(k∈,k≥)时结论正确,证明当n=k+1时结论也正确.(归纳递推)完成这两个步骤后,就可以断定命题对从开始的所有正整数n都正确.这种证明方法叫做数学归纳法.第三阶段:巩固认知结构,充实认知过程例1.用数学归纳法证明证明:(1)当n=1时,左边,右边,等式成立。(2)假设当n=k时,等式成立,即则当n=k+1时,左边=即当n=k+1时等式也成立。=右边即当n=k+1时等式也成立。由(1)、(2)可知,n∈时,等式成立。师生共同总结:1、数学归纳法是一种完全归纳的证明方法,它适用于与正整数有关的问题。2、两个步骤、一个结论缺一不可3、在证明递推步骤时,必须使用归纳假设,进行恒等变换。例2:已知数列设Sn为数列前n项和,计算S1,S2,S3,S4,根据计算结果,猜想Sn的表达式,并用数学归纳法进行证明。解:可以看到,上面表示四个结果的分数中,分子与项数一致,分母可用项数n表示为3n+1,可以猜想证明过程由学生自主完成。方法反思:利用归纳--猜想---证明的模式去探索问题巩固练习:已知每个小正方形的边长为1,观察图像你能得出什么结论?并用数学归纳法证明你的结论?归纳猜想:1+3+5+…+(2n–1)=n21+3+5+…+(2n–1)=n2(n∈N*)证明:(1)当n=1时,左边=1,右边=12=1,等式成立.假设n=k时等式成立,即1+3+5+…+(2k–1)=k2=k2=k2+2k+1根据(1),(2)知等式对一切n∈N根据(1),(2)知等式对一切n∈N*都成立.【课堂小结】(1)数学归纳法只适用于证明与正整数有关的命题。(2)用数学归纳法证明命题的一般步骤(3)本节课通过从“多米诺骨牌”讲起,借助这个游戏的设计理念,揭示了数学归纳法依据的两个条件及它们之间的关系。(4)本节课使用数学归纳法只证明了与正整数有关的等式成立的问题,在以后的学习中,我们将会遇到使用数学归纳法证明与正整数有关的不等式及几何问题,也会遇到n0的取值不是1的情况。在下一节课我们还将通过具体的例子使同学们明白为什么在使用数学归纳法证明时两个步骤缺一不可。【作业】1基础作业:课本96页A组1,22提高作业:已知数列满足,(1)求(2)由(1)猜想的通项公式;(3)【板书设计】§2·3数学归纳法(1)证明当n取第一个值n0时结论正确;(归纳奠基)(2)假设当n=k时结论正确,证明当n=k+1时结论也正确.(归纳递推)由1°和2°对任意的n≥n0,n∈N*命题成立猜想证明过程:1)学生板演2)例题:数学归纳法评测练习1.用数学归纳法证明命题“当n是正奇数时,xn+yn能被x+y整除”,在第二步时,正确的证法是()A.假设n=k(k∈N+),证明n=k+1命题成立B.假设n=k(k是正奇数),证明n=k+1命题成立C.假设n=2k+1(k∈N+),证明n=k+1命题成立D.假设n=k(k是正奇数),证明n=k+2命题成立2.用数学归纳法证明“1+eq\f(1,2)+eq\f(1,3)+…+eq\f(1,2n-1)<n(n∈N*,n>1)”时,由n=k(k>1)不等式成立,推证n=k+1时,左边应增加的项数是()A.2k-1B.2k-1C.2kD.2k+13.对于不等式eq\r(n2+n)<n+1(n∈N*),某同学用数学归纳法的证明过程如下:(1)当n=1时,eq\r(12+1)<1+1,不等式成立.(2)假设当n=k(k∈N*)时,不等式成立,即eq\r(k2+k)<k+1,则当n=k+1时,eq\r(k+12+k+1)=eq\r(k2+3k+2)<eq\r(k2+3k+2+k+2)=eq\r(k+22)=(k+1)+1,∴当n=k+1时,不等式成立,则上述证法()A.过程全部正确B.n=1验得不正确C.归纳假设不正确D.从n=k到n=k+1的推理不正确4.用数学归纳法证明“n2+(n+1)3+(n+2)3(n∈N*)能被9整除”,要利用归纳假设证n=k+1时的情况,只需展开()A.(k+3)3B.(k+2)3C.(k+1)3D.(k+1)3+(k+2)35.用数学归纳法证明不等式eq\f(1,n+1)+eq\f(1,n+2)+…+eq\f(1,2n)<eq\f(13,14)(n≥2,n∈N*)的过程中,由n=k递推到n=k+1时不等式左边()A.增加了一项eq\f(1,2k+1)B.增加了两项eq\f(1,2k+1)、eq\f(1,2k+2)C.增加了B中两项但减少了一项eq\f(1,k+1)D.以上各种情况均不对6若f(n)=12+22+32+…+(2n)2,则f(k+1)与f(k)的递推关系式是_____.7.在数列{an},{bn}中,a1=2,b1=4,且an,bn,an+1成等差数列,bn,an+1,bn+1成等比列(n∈N*),求a2,a3,a4与b2,b3,b4的值,由此猜测{an},{bn}的通项公式,并证明你的结论.效果分析本节课,教学设计充分考虑了学生主体地位和教师的主导地位相结合的原则,力求尝试让学生主动学习,尝试探究。取得了较好的效果,具体表现如下:学生对知识目标的达成非常好:大部分同学通过学案上素材及课件中的辅助材料掌握了本节课知识目标:掌握数学归纳法的证明步骤,理解归纳递推的思想培养了学生的合作探究和表达能力:为了突出在本节课中突出学生的主题地位,设计时充分考虑了学生活动环节。比如学生较好的完成了学案上设置的问题,预习效果不错。更难能可贵的是,在小组合作探究的基础上,学生掌握了数学归纳法的证明步骤,并能用归纳假设作条件运用运算技巧证明n=k+1时的命题,顺利的突破了本节课的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论