




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省池州市桃坡中学高二数学理模拟试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.若定义运算:,例如,则下列等式不能成立的是(
).A. B.C. D.()参考答案:C2.函数的值域是,则函数的值域为(
)A.
B.
C.
D.参考答案:A3.若椭圆的左、右焦点分别为F1、F2,线段F1F2被抛物线y2=2bx的焦点分成5:3两段,则此椭圆的离心率为 (
)
A.
B.
C.
D.参考答案:B4.下列说法正确的是()A.命题“若x2=1,则x=1的否命题为:“若x2=1,则x≠1”B.“m=1”是“直线x﹣my=0和直线x+my=0互相垂直”的充要条件C.命题“?x0∈R,使得x02+x0+1<0”的否定是:“?x∈R,均有x2+x+1<0”D.命题“已知A,B为一个三角形两内角,若A=B,则sinA=sinB”的否命题为真命题参考答案:D【考点】命题的真假判断与应用.【分析】写出命题的否命题判断A;由两直线垂直与系数的关系求得m判断B;写出特称命题的否定判断C;由充分必要条件的判定方法判断D.【解答】解:命题“若x2=1,则x=1的否命题为:“若x2≠1,则x≠1”,故A错误;由1×1﹣m2=0,得m=±1,∴“m=1”是“直线x﹣my=0和直线x+my=0互相垂直”的充分不必要条件,故B错误;命题“?x0∈R,使得x02+x0+1<0”的否定是:“?x∈R,均有x2+x+1≥0”,故C错误;由三角形中,A=B?a=b?sinA=sinB,得:命题“已知A,B为一个三角形两内角,若A=B,则sinA=sinB”的否命题为真命题,故D正确.故选:D.5.若P点是以A(﹣3,0)、B(3,0)为焦点,实轴长为2的双曲线与圆x2+y2=9的一个交点,则|PA|+|PB|=(
)A.4 B.2 C.2 D.3参考答案:C【考点】双曲线的简单性质.【专题】计算题;方程思想;综合法;圆锥曲线的定义、性质与方程.【分析】由题意,AP⊥BP,由勾股定理和双曲线的定义,结合完全平方公式,计算即可得到.【解答】解:由题意,AP⊥BP,即有|PA|2+|PB|2=|AB|2=36,①由双曲线的定义可得||PA|﹣|PB||=2a=2,②②两边平方可得|PA|2+|PB|2﹣2|PA|?|PB|=20,即有2|PA|?|PB|=36﹣20=16,再由①,可得(|PA|+|PB|)2=36+16=52,则|PA|+|PB|=2.故选:C.【点评】本题考查双曲线的定义和性质,用好双曲线的定义和直径所对的圆周角为直角,是解本题的关键.6.已知函数f(x)=,若f(a)=,则a的值为(
) A.﹣2或 B. C.﹣2 D.参考答案:B考点:函数的值.专题:函数的性质及应用.分析:由f(a)=得到关于a的两个等式,在自变量范围内求值.解答: 解:因为f(a)=,所以,或者,解得a=或者a=﹣2;故选B.点评:本题考查了分段函数的函数值;只要由f(a)=得到两个方程,分别解之即可;注意解得的自变量要在对应的自变量范围内.7.三棱锥D-ABC中,平面,,,E为BC中点,F为CD中点,则异面直线AE与BF所成角的余弦值为
A.
B.
C.
D.参考答案:B略8.三个互不重合的平面能把空间分成部分,则所有可能值为 (
)A.4、6、8
B.4、6、7、8
C.4、6、7
D.4、5、7、8参考答案:B略9.以方程x2+px+1=0的两根为三角形两边之长,第三边长为2,则实数p的取值范围是()A.p<﹣2
B.p≤﹣2或p≥2 C.﹣2<p<2 D.﹣2<p<﹣2参考答案:D【考点】三角形中的几何计算.【分析】先根据方程有两个实数根求出p的取值范围,再根据韦达定理求出x1+x2及x1x2的值,根据三角形的三边关系即可得出结论.【解答】解:∵三角形的两边长是方程x2+px+1=0的两个根,∴△≥0,即△=p2﹣4≥0,解得p≥2或p≤﹣2.∵x1+x2=﹣p>2,x1x2=1,|x1﹣x2|<2,故p<﹣2,p2<8,∴﹣2<p<﹣2,故选:D.10.当K2>6.635时,认为事件A与事件B()A.有95%的把握有关 B.有99%的把握有关C.没有理由说它们有关 D.不确定参考答案:B【考点】独立性检验的应用.【专题】计算题;方程思想;综合法;概率与统计.【分析】根据所给的观测值同临界值的比较,得到有1﹣0.01=99%的把握认为事件A与事件B有关系,得到结果.【解答】解:∵K2>6.635,∴有1﹣0.01=99%的把握认为两个事件有关系,故选:B.【点评】本题考查实际推断原理和假设检验的作用,本题解题的关键是理解临界值对应的概率的意义,本题是一个基础题.二、填空题:本大题共7小题,每小题4分,共28分11.函数的图象在点M处的切线方程是,=
.参考答案:4;
12.抛物线的焦点到准线的距离是
.参考答案:4略13.已知则___________.参考答案:略14.有一隧道,内设双行线公路,同方向有两个车道(共有四个车道),每个车道宽为3m,此隧道的截面由一个长方形和一抛物线构成,如图所示。为保证安全,要求行驶车辆顶部(设为平顶)与隧道顶部在竖直方向上高度之差至少为,靠近中轴线的车道为快车道,两侧的车道为慢车道,则车辆通过隧道时,慢车道的限制高度为
.(精确到)参考答案:4.3
略15.已知的左右焦点分别为F1、F2,过F1且垂直于x轴的直线与双曲线左支交于A、B两点,若△ABF2为正三角形,则双曲线的离心率为.参考答案:【考点】双曲线的简单性质.【分析】利用直角三角形中含30°角所对的边的性质及其双曲线的定义、勾股定理即可得到a,c的关系.【解答】解:由△ABF2是正三角形,则在Rt△AF1F2中,有∠AF2F1=30°,∴AF2=2AF1,又|AF2|﹣|AF1|=2a.∴AF2=4a,AF1=2a,又F1F2=2c,又在Rt△AF1F2中,|AF1|2+|F1F2|2=|AF2|2,得到4a2+4c2=16a2,∴=3.∴e==,故答案为:.16.已知双曲线的左右焦点为,过点的直线与双曲线左支相交于两点,若,则为
.参考答案:417.已知双曲线,那么它的焦点到渐近线的距离为
.参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分12分)户外运动已经成为一种时尚运动,某单位为了了解员工喜欢户外运动是否与性别有关,决定从本单位全体650人中采用分层抽样的办法抽取50人进行问卷调查,得到了如下列联表:
喜欢户外运动不喜欢户外运动合计男性
5
女性10
合计
50已知在这50人中随机抽取1人抽到喜欢户外运动的员工的概率是.(1)请将上面的列联表补充完整;(2)求该公司男、女员工各多少名;(3)是否有99.5%的把握认为喜欢户外运动与性别有关?并说明你的理由.下面的临界值表仅供参考:P(K2≥k)0.150.100.050.0250.0100.0050.001k2.0722.7063.8415.0246.6357.87910.828参考公式:,其中n=a+b+c+d参考答案:(1)∵在全部50人中随机抽取1人抽到喜欢户外运动的概率是,∴喜欢户外运动的男女员工共30,其中,男员工20人,列联表补充如下:
喜欢户外运动不喜欢户外运动合计男性20525女性101525合计302050(2)该公司男员工人数为×650=325,则女员工325人.(3)将2×2列联表中的数据代入公式计算,得K2=≈8.333>7.879,∴有99.5%的把握认为喜欢户外运动与性别有关.19.已知函数。(1)求的最小正周期:(2)求在区间上的最大值和最小值。
参考答案:(Ⅰ)因为…4分所以的最小正周期为……………………6分(Ⅱ)因为……………8分于是,当时,取得最大值2;…10分当取得最小值—1。………12分
略20.用长为90cm,宽为48cm的长方形铁皮做一个无盖的容器,先在四角分别截去一个小正方形,然后把四边翻转90°角,再焊接而成(如图),问该容器的高为多少时,容器的容积最大?最大容积是多少?参考答案:【考点】基本不等式在最值问题中的应用.【分析】首先分析题目求长为90cm,宽为48cm的长方形铁皮做一个无盖的容器当容器的高为多少时,容器的容积最大.故可设容器的高为x,体积为V,求出v关于x的方程,然后求出导函数,分析单调性即可求得最值.【解答】解:根据题意可设容器的高为x,容器的体积为V,则有V=(90﹣2x)(48﹣2x)x=4x3﹣276x2+4320x,(0<x<24)求导可得到:V′=12x2﹣552x+4320由V′=12x2﹣552x+4320=0得x1=10,x2=36.所以当x<10时,V′>0,当10<x<36时,V′<0,当x>36时,V′>0,所以,当x=10,V有极大值V(10)=19600,又V(0)=0,V(24)=0,所以当x=10,V有最大值V(10)=19600故答案为当高为10,最大容积为19600.21.(本小题满分10分)如图,已知在直四棱柱ABCD-A1B1C1D1中,AD⊥DC,AB∥DC,DC=DD1=2AD=2AB=2.
(1)求证:DB⊥平面B1BCC1;(2)设E是DC上一点,试确定E的位置,使得D1E∥平面A1BD,并说明理由.参考答案:(1)证明:∵AB∥DC,AD⊥DC,∴AB⊥AD,在Rt△ABD中,AB=AD=1,∴BD=,易求BC=,又∵CD=2,∴BD⊥BC.又BD⊥BB1,B1B∩BC=B,∴BD⊥平面B1BCC1.(2)DC的中点即为E点.∵DE∥AB,DE=AB,∴四边形ABED是平行四边形.∴AD綊BE.又AD綊A1D1,∴BE綊A1D1,∴四边形A1D1EB是平行四边形.∴D1E∥A1B.∵D1E?平面A1BD,∴D1E∥平面A1BD.22.在平面直角坐标系xOy中,已知点A(0,3),直线l:y=2x﹣4,设圆C的半径为1,圆心C在直线l上;若动点M满足:|MA|=2|MO|,且M的轨迹与圆C有公共点.求圆心C的横坐标a的取值范围.参考答案:【考点】轨迹方程.【分析】设M(x,y),由MA=2MO,利用两点间的距离公式列出关系式,整理后得到点M的轨迹为以(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年金融营销实战模拟题集及案例分析报告
- 2025年旅游行业从业资格认证考试模拟卷及答案解析
- 2025注册验船师考试(C级船舶检验专业综合能力)仿真试题及答案一
- 2025年基础素养试题及答案
- 北京市门头沟区2023-2024学年七年级下学期期末考试生物试题及答案
- 2025年医药销售代表专业能力提升面试指南及模拟题
- 2025年智能家居产品经理中级笔试预测题与考试指南
- 2025年无人机航拍测绘技术中级题库及参考答案
- 2025年初级造纸工岗位面试要点与常见问题解析
- 广东省肇庆市2026届化学高三第一学期期中质量跟踪监视模拟试题含解析
- 从业人员晨检记录表
- CQI-9热处理系统审核第三版(中文版)
- 马兰士CD6004 使用说明书
- 2023年泰州市高级教师职称考试试题
- 业余足球比赛技术统计表
- 社情民意写作基本知识要点课件
- 医疗器械生产企业GMP培训专家讲座
- 辐射及其安全防护(共38张PPT)
- 金风15兆瓦机组变流部分培训课件
- 膀胱镜检查记录
- 沈阳终止解除劳动合同证明书(三联)
评论
0/150
提交评论