




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2018年山东省德州市临邑县中考数学一模试卷一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得4分,选错、不选或选出的答案超过一个均记零分.)1.(4分)﹣的绝对值是()A.﹣ B. C.﹣2 D.22.(4分)如图在长方体中挖去一个圆柱体后,得到的几何体的左视图为()A. B. C. D.3.(4分)已知x1,x2是一元二次方程x2+2x﹣k﹣1=0的两根,且x1x2=﹣3,则k的值为()A.1 B.2 C.3 D.44.(4分)下列运算正确的是()A.a2•a2=2a2 B.a2+a2=a4C.(1+2a)2=1+2a+4a2 D.(﹣a+1)(a+1)=1﹣a25.(4分)我校四名跳远运动员之前的10次跳远测试中成绩的平均数相同,方差s2如表所示,如果要选出一名跳远成绩最稳定的选手参加抚顺市运动会,应选择的选手是()选手甲乙丙丁s20.50.50.60.4A.甲 B.乙 C.丙 D.丁6.(4分)若分式的值为零,则x的值是()A.1 B.﹣1 C.±1 D.27.(4分)把直尺、三角尺和圆形螺母按如图所示放置于桌面上,∠CAB=60°,若量出AD=6cm,则圆形螺母的外直径是()A.12cm B.24cm C.6cm D.12cm8.(4分)如图,已知点E(﹣4,2),F(﹣2,﹣2),以O为位似中心,按比例尺1:2,把△EFO缩小,则点E的对应点E′的坐标为()A.(2,﹣1) B.(8,﹣4) C.(2,﹣1)或(﹣2,1) D.(8,﹣4)或(﹣8,﹣4)9.(4分)如图,直线a∥b,Rt△ABC的直角顶点B落在直线a上,若∠1=25°,则∠2的大小为()A.55° B.75° C.65° D.85°10.(4分)如图,已知直线AD是⊙O的切线,点A为切点,OD交⊙O于点B,点C在⊙O上,且∠ODA=36°,则∠ACB的度数为()A.54° B.36° C.30° D.27°11.(4分)将二次函数y=x2+2x﹣1的图象沿x轴向右平移2个单位长度,得到的函数表达式是()A.y=(x+3)2﹣2 B.y=(x+3)2+2 C.y=(x﹣1)2+2 D.y=(x﹣1)2﹣212.(4分)如表是一个4×4(4行4列共16个“数”组成)的奇妙方阵,从这个方阵中选四个“数”,而且这四个“数”中的任何两个不在同一行,也不在同一列,有很多选法,把每次选出的四个“数”相加,其和是定值,则方阵中第三行三列的“数”是()302sin60°22﹣3﹣2﹣sin45°0|﹣5|623()﹣14()﹣1A.5 B.6 C.7 D.8二、填空题:(本大题共6小题,共24分,只要求填写最后结果,每小题填对得4分.)13.(4分)2017年第一季度,某市公共财政预算收入完成196亿元,将196亿用科学记数法表示为14.(4分)分解因式:a3﹣9a=.15.(4分)如图,某城市的电视塔AB坐落在湖边,数学老师带领学生隔湖测量电视塔AB的高度,在点M处测得塔尖点A的仰角∠AMB为22.5°,沿射线MB方向前进200米到达湖边点N处,测得塔尖点A在湖中的倒影A′的俯角∠A′NB为45°,则电视塔AB的高度为米(结果保留根号).16.(4分)若关于x的分式方程=2的解为非负数,则m的取值范围是.17.(4分)如图,在矩形ABCD中,CD=2,以点C为圆心,CD长为半径画弧,交AB边于点E,且E为AB中点,则图中阴影部分的面积为.18.(4分)如图,四边形ABCD是平行四边形,点E是边CD上的一点,且BC=EC,CF⊥BE交AB于点F,P是EB延长线上一点,下列结论:①BE平分∠CBF;②CF平分∠DCB;③BC=FB;④PF=PC.其中正确的有.(填序号)三、解答题:本大题共7小题,共78分.解答要写出必要的文字说明、证明过程或演算步骤.19.(8分)先化简,再求值:(a﹣2﹣)÷,其中a=(3﹣π)0+()﹣1.20.(10分)为培养学生良好学习习惯,某学校计划举行一次“整理错题集”的展示活动,对该校部分学生“整理错题集”的情况进行了一次抽样调查,根据收集的数据绘制了下面不完整的统计图表.整理情况频数频率非常好0.21较好700.35一般m不好36请根据图表中提供的信息,解答下列问题:(1)本次抽样共调查了名学生;(2)m=;(3)该校有1500名学生,估计该校学生整理错题集情况“非常好”和“较好”的学生一共约多少名?(4)某学习小组4名学生的错题集中,有2本“非常好”(记为A1、A2),1本“较好”(记为B),1本“一般”(记为C),这些错题集封面无姓名,而且形状、大小、颜色等外表特征完全相同,从中抽取一本,不放回,从余下的3本错题集中再抽取一本,请用“列表法”或“画树形图”的方法求出两次抽到的错题集都是“非常好”的概率.21.(10分)如图,AB是⊙O的直径,点D,E在⊙O上,∠A=2∠BDE,点C在AB的延长线上,∠C=∠ABD.(1)求证:CE是⊙O的切线;(2)若BF=2,EF=,求⊙O的半径长.22.(12分)2017年遂宁市吹响了全国文明城市创建决胜“集结号”.为了加快创建步伐,某运输公司承担了某标段的土方运输任务,公司已派出大小两种型号的渣土运输车运输土方.已知一辆大型渣土运输车和一辆小型渣土运输车每次共运15吨;3辆大型渣土运输车和8辆小型渣土运输车每次共运70吨.(1)一辆大型渣土运输车和一辆小型渣土运输车每次各运土方多少吨?(2)该渣土运输公司决定派出大小两种型号渣土运输车共20辆参与运输土方,若每次运输土方总量不小于148吨,且小型渣土运输车至少派出7辆,问该渣土运输公司有几种派出方案?(3)在(2)的条件下,已知一辆大型渣土运输车运输花费500元/次,一辆小型渣土运输车运输花费300元/次,为了节约开支,该公司应选择哪种方案划算?23.(12分)如图,在平面直角坐标系中,正比例函数y=kx的图象与反比例函数y=的图象经过点A(2,2).(1)分别求这两个函数的表达式;(2)将直线OA向上平移3个单位长度后与y轴交于点B,与反比例函数图象在第一象限内的交点为C,连接AB,AC,求点C的坐标及△ABC的面积;(3)在第一象限内,直接写出反比例函数的值大于直线BC的值时,自变量x的取值范围.24.(12分)定义:我们把三角形被一边中线分成的两个三角形叫做“友好三角形”.性质:如果两个三角形是“友好三角形”,那么这两个三角形的面积相等.理解:如图①,在△ABC中,CD是AB边上的中线,那么△ACD和△BCD是“友好三角形”,并且S△ACD=S△BCD.应用:如图②,在矩形ABCD中,AB=4,BC=6,点E在AD上,点F在BC上,AE=BF,AF与BE交于点O.(1)求证:△AOB和△AOE是“友好三角形”;(2)连接OD,若△AOE和△DOE是“友好三角形”,求四边形CDOF的面积.探究:在△ABC中,∠A=30°,AB=4,点D在线段AB上,连接CD,△ACD和△BCD是“友好三角形”,将△ACD沿CD所在直线翻折,得到△A′CD,若△A′CD与△ABC重合部分的面积等于△ABC面积的,请直接写出△ABC的面积.25.(14分)如图1,关于x的二次函数y=﹣x2+bx+c经过点A(﹣3,0),点C(0,3),点D为二次函数的顶点,DE为二次函数的对称轴,E在x轴上.(1)求抛物线的解析式;(2)DE上是否存在点P到AD的距离与到x轴的距离相等?若存在求出点P,若不存在请说明理由;(3)如图2,DE的左侧抛物线上是否存在点F,使2S△FBC=3S△EBC?若存在求出点F的坐标,若不存在请说明理由.
2018年山东省德州市临邑县中考数学一模试卷参考答案与试题解析一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得4分,选错、不选或选出的答案超过一个均记零分.)1.【解答】解:﹣的绝对值为.故选:B.2.【解答】解:从左面看所得到的图形是长方形,中间两条竖的虚线.故选:A.3.【解答】解:∵x1,x2是一元二次方程x2+2x﹣k﹣1=0的两根,∴x1x2=﹣k﹣1.∵x1x2=﹣3,∴﹣k﹣1=﹣3,解得:k=2.故选:B.4.【解答】解:A、a2•a2=a4,此选项错误;B、a2+a2=2a2,此选项错误;C、(1+2a)2=1+4a+4a2,此选项错误;D、(﹣a+1)(a+1)=1﹣a2,此选项正确;故选:D.5.【解答】解:由题意丁的方差最小,所以丁的成绩最稳定,故选:D.6.【解答】解:∵分式的值为零,∴|x|﹣1=0,x+1≠0,解得:x=1.故选:A.7.【解答】解:设圆形螺母的圆心为O,与AB切于E,连接OD,OE,OA,如图所示:∵AD,AB分别为圆O的切线,∴AO为∠DAB的平分线,OD⊥AC,OD⊥AC,又∠CAB=60°,∴∠OAE=∠OAD=∠DAB=60°,在Rt△AOD中,∠OAD=60°,AD=6cm,∴tan∠OAD=tan60°=,即=,∴OD=6cm,则圆形螺母的直径为12cm.故选:D.8.【解答】解:以O为位似中心,按比例尺1:2,把△EFO缩小,则点E的对应点E′的坐标为(﹣4×,2×)或[﹣4×(﹣),2×(﹣)],即(2,﹣1)或(﹣2,1),故选:C.9.【解答】解:∵∠1=25°,∠1+∠ABC+∠3=180°,∴∠3=180﹣∠1﹣∠ABC=180°﹣25°﹣90°=65°.∵a∥b,∴∠2=∠3=65°.故选:C.10.【解答】解:∵AD为圆O的切线,∴AD⊥OA,即∠OAD=90°,∵∠ODA=36°,∴∠AOD=54°,∵∠AOD与∠ACB都对,∴∠ACB=∠AOD=27°.故选:D.11.【解答】解:∵y=x2+2x﹣1=(x+1)2﹣2,∴二次函数y=x2+2x﹣1的图象沿x轴向右平移2个单位长度,得到的函数表达式是:y=(x+1﹣2)2﹣2=(x﹣1)2﹣2,故选:D.12.【解答】解:∵第一行为1,2,3,4;第二行为﹣3,﹣2,﹣1,0;第四行为3,4,5,6∴第三行为5,6,7,8,∴方阵中第三行三列的“数”是7,故选:C.二、填空题:(本大题共6小题,共24分,只要求填写最后结果,每小题填对得4分.)13.【解答】解:196亿用科学记数法表示为1.96×1010,故答案为:1.96×1010.14.【解答】解:a3﹣9a=a(a2﹣32)=a(a+3)(a﹣3).15.【解答】解:如图,连接AN,由题意知,BM⊥AA',BA=BA'∴AN=A'N,∴∠ANB=∠A'NB=45°,∵∠AMB=22.5°,∴∠MAN=∠ANB﹣∠AMB=22.5°=∠AMN,∴AN=MN=200米,在Rt△ABN中,∠ANB=45°,∴AB=AN=100(米),故答案为100.16.【解答】解:去分母得,m﹣1=2(x﹣1),∴x=,∵方程的解是非负数,∴m+1≥0即m≥﹣1又因为x﹣1≠0,∴x≠1,∴≠1,∴m≠1,则m的取值范围是m≥﹣1且m≠1.故选:m≥﹣1且m≠1.17.【解答】解:由题意可知:AB=CD=2,∴EB=AB=1,∴∠ECB=30°,∴∠DCE=60°,∴扇形CDE的面积为:=π,∵EB=1,CE=2,∴由勾股定理可知:BC=,∴AD=BC=梯形EADC的面积为:==,∴阴影部分的面积为:﹣故答案为:﹣18.【解答】解:证明:∵BC=EC,∴∠CEB=∠CBE,∵四边形ABCD是平行四边形,∴DC∥AB,∴∠CEB=∠EBF,∴∠CBE=∠EBF,∴①BE平分∠CBF,正确;∵BC=EC,CF⊥BE,∴∠ECF=∠BCF,∴②CF平分∠DCB,正确;∵DC∥AB,∴∠DCF=∠CFB,∵∠ECF=∠BCF,∴∠CFB=∠BCF,∴BF=BC,∴③正确;∵FB=BC,CF⊥BE,∴B点一定在FC的垂直平分线上,即PB垂直平分FC,∴PF=PC,故④正确.故答案为①②③④.三、解答题:本大题共7小题,共78分.解答要写出必要的文字说明、证明过程或演算步骤.19.【解答】解:(a﹣2﹣)÷===2a+6,当a=(3﹣π)0+()﹣1=1+4=5时,原式=2×5+6=16.20.【解答】解:(1)本次抽样共调查的人数是:70÷0.35=200(人);(2)非常好的频数是:200×0.21=42(人),一般的频数是:m=200﹣42﹣70﹣36=52(人),(3)该校学生整理错题集情况“非常好”和“较好”的学生一共约有:1500×(0.21+0.35)=840(人);(4)根据题意画图如下:∵所有可能出现的结果共12种情况,并且每种情况出现的可能性相等,其中两次抽到的错题集都是“非常好”的情况有2种,∴两次抽到的错题集都是“非常好”的概率是=.21.【解答】(1)证明:连接OE,则∠BOE=2∠BDE,又∠A=2∠BDE,∴∠BOE=∠A,∵∠C=∠ABD,∠A=∠BOE,∴△ABD∽△OCE∴∠ADB=∠OEC,又∵AB是直径,∴∠OEC=∠ADB=90°∴CE与⊙O相切;(2)解:连接EB,则∠A=∠BED,∵∠A=∠BOE,∴∠BED=∠BOE,在△BOE和△BEF中,∠BEF=∠BOE,∠EBF=∠OBE,∴△OBE∽△EBF,∴=,则=,∵OB=OE,∴EB=EF,∴=,∵BF=2,EF=,∴=,∴OB=.22.【解答】解:(1)设一辆大型渣土运输车每次运土方x吨,一辆小型渣土运输车每次运土方y吨,根据题意,可得:,解得:,答:一辆大型渣土运输车每次运土方10吨,一辆小型渣土运输车每次运土方5吨;(2)设派出大型渣土运输车a辆,则派出小型运输车(20﹣a)辆,根据题意,可得:,解得:9.6≤a≤13,∵a为整数,∴a=10、11、12、13,则渣土运输公司有4种派出方案,如下:方案一:派出大型渣土运输车10辆、小型渣土运输车10辆;方案二:派出大型渣土运输车11辆、小型渣土运输车9辆;方案三:派出大型渣土运输车12辆、小型渣土运输车8辆;方案四:派出大型渣土运输车13辆、小型渣土运输车7辆;(3)设运输总花费为W,则W=500a+300(20﹣a)=200a+6000,∵200>0,∴W随a的增大而增大,∵9.6≤a≤13,且a为整数,∴当a=10时,W取得最小值,最小值W=200×10+6000=8000,故该公司选择方案一最省钱.23.【解答】解:(1)将A(2,2)代入y=kx,∴2k=2,∴k=1,∴正比例函数的解析式为:y=x将A(2,2)代入y=∴m=2×2=4,∴反比例函数的解析式为:y=;(2)∵直线BC由直线OA向上平移3个单位所得,∴B(0,3)∴直线BC的解析式为:y=x+3,联立解得:或,∵点C在第一象限,∴点C的坐标为(1,4)∵OA∥BC,∴S△ABC=S△BOC=×3×1=,(3)在第一象限内,要使反比例函数y=的值大于直线BCy=x+3的值,从图象可知∵点C的坐标为(1,4)∴0<x<124.【解答】(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∵AE=BF,∴四边形ABFE是平行四边形,∴OE=OB,∴△AOE和△AOB是友好三角形.(2)解:∵△AOE和△DOE是友好三角形,∴S△AOE=S△DOE,AE=ED=AD=3,∵△AOB与△AOE是友好三角形,∴S△AOB=S△AOE,∵△AOE≌△FOB,∴S△AOE=S△FOB,∴S△AOD=S△ABF,∴S四边形CDOF=S矩形ABCD﹣2S△ABF=4×6﹣2××4×3=12.探究:解:分为两种情况:①如图1,∵S△ACD=S△BCD.∴AD=BD=AB,∵沿CD折叠A和A′重合,∴AD=A′D=AB=4=2,∵△A′CD与△ABC重合部分的面积等于△ABC面积的,∴S△DOC=S△ABC=S△BDC=S△ADC=S△A′DC,∴DO=OB,A′O=CO,∴四边形A′DCB是平行四边形,∴BC=A′D=2,过B作BM⊥AC于M,∵AB=4,∠BAC=30°,∴BM=AB=2=BC,即C和M重合,∴∠ACB=90°,由勾股定理得:AC==2,∴△ABC的面积是×BC×AC=×2×2=2;②如图2,∵S△ACD=S△BCD.∴AD=BD=AB,∵沿CD折叠A和A′重合,∴AD=A′D=AB=4=2,∵△A′CD与△ABC重合部分的面积等于△ABC面积的,∴S△DOC=S△ABC=S△BDC=S△ADC
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- DB32/T 4220-2022消防设施物联网系统技术规范
- DB32/T 3988-2021优质中熟中粳稻生产技术规程
- DB32/T 3816-2020农田管道输水灌溉工程技术规范
- DB32/T 3761.42-2021新型冠状病毒肺炎疫情防控技术规范第42部分:运输机场
- DB32/T 3539-2019水稻干尖线虫病防治技术规程
- DB32/ 4438-2022印刷工业大气污染物排放标准
- DB31/T 990-2016轻型汽车用发动机能效等级及测量方法
- DB31/T 987-2016基层农产品检测机构设置技术规程
- DB31/T 892-2015企业能源管理标准体系编制指南
- DB31/T 755-2018体育旅游休闲基地服务质量要求及等级划分
- 2025年农村个人果园承包合同
- 湖北省武汉市2025届高三年级五月模拟训练试题数学试题及答案(武汉五调)
- 医师挂证免责协议书
- 2025年数控技术专业毕业考试试题及答案
- 济南民政离婚协议书
- 车牌租赁协议和抵押合同
- 2025年内蒙古自治区初中学业水平考试数学模拟试题 (一)(含答案)
- 四川省(科大讯飞大数据)2025届高三第二次教学质量联合测评生物试题及答案
- 《绿色建筑施工培训课件》资料
- GA 1812.3-2024银行系统反恐怖防范要求第3部分:印钞造币企业
- 【公开课】+滑轮-人教版(2024)初中物理八年级下册
评论
0/150
提交评论