




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届广东省百校联盟数学高二上期末考试模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.由于受疫情的影响,学校停课,同学们通过三种方式在家自主学习,现学校想了解同学们对假期学习方式的满意程度,收集如图1所示的数据;教务处通过分层抽样的方法抽取4%的同学进行满意度调查,得到的数据如图2.下列说法错误的是()A.样本容量为240B.若,则本次自主学习学生的满意度不低于四成C.总体中对方式二满意学生约为300人D.样本中对方式一满意的学生为24人2.已知方程表示的曲线是焦点在轴上的椭圆,则的取值范围A. B.C. D.3.已知集合,,则A. B.C. D.4.设分别是椭圆的左、右焦点,P是C上的点,则的周长为()A.13 B.16C.20 D.5.若指数函数(且)与三次函数的图象恰好有两个不同的交点,则实数的取值范围是()A. B.C. D.6.已知,是球的球面上两点,,为该球面上的动点,若三棱锥体积的最大值为36,则球的表面积为()A. B.C. D.7.已知椭圆的右焦点和右顶点分别为F,A,离心率为,且,则n的值为()A.4 B.3C.2 D.8.某商场有四类食品,其中粮食类、植物油类、动物性食品类以及果蔬类分别有40种、10种、30种、20种,现从中抽取一个容量为20的样本进行食品安全检测.若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是()A.4 B.5C.6 D.79.过点且与抛物线只有一个公共点的直线有()A.1条 B.2条C.3条 D.0条10.如图是函数的导函数的图象,下列说法正确的是()A.函数在上是增函数B.函数在上是减函数C.是函数的极小值点D.是函数的极大值点11.学校开设甲类选修课3门,乙类选修课4门,从中任选3门,甲乙两类课程都有选择的不同选法种数为()A.24 B.30C.60 D.12012.若空间中n个不同的点两两距离都相等,则正整数n的取值A.至多等于3 B.至多等于4C.等于5 D.大于5二、填空题:本题共4小题,每小题5分,共20分。13.过点作斜率为的直线与椭圆相交于、两个不同点,若是的中点,则该椭圆的离心率___________.14.已知向量与是平面的两个法向量,则__________15.已知圆:,圆:,则圆与圆的位置关系是______16.若在上是减函数,则实数a的取值范围是_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某情报站有.五种互不相同的密码,每周使用其中的一种密码,且每周都是从上周末使用的四种密码中等可能地随机选用一种.设第一周使用密码,表示第周使用密码的概率(1)求;(2)求证:为等比数列,并求的表达式18.(12分)已知的展开式中只有第五项的二项式系数最大.(1)求该展开式中有理项的项数;(2)求该展开式中系数最大的项.19.(12分)函数.(1)当时,解不等式;(2)若不等式对任意恒成立,求实数a的取值范围.20.(12分)设数列的前项和为,为等比数列,且,(1)求数列和的通项公式;(2)设,求数列的前项和21.(12分)已知抛物线的焦点为F,其中P为E的准线上一点,O是坐标原点,且(1)求抛物线E的方程;(2)过的直线与E交于C,D两点,在x轴上是否存在定点,使得x轴平分?若存在,求出点M的坐标;若不存在,请说明理由22.(10分)已知抛物线C的顶点在坐标原点,准线方程为(1)求抛物线C的标准方程;(2)若AB是过抛物线C的焦点F的弦,以弦AB为直径的圆与直线的位置关系是什么?先给出你的判断结论,再给出你的证明,并作出必要的图形
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】利用扇形统计图和条形统计图可求出结果【题目详解】选项A,样本容量为,该选项正确;选项B,根据题意得自主学习的满意率,错误;选项C,样本可以估计总体,但会有一定的误差,总体中对方式二满意人数约为,该选项正确;选项D,样本中对方式一满意人数为,该选项正确.故选:B【题目点拨】本题主要考查了命题真假的判断,考查扇形统计图和条形统计图等基础知识,考查运算求解能力,属于中档题2、A【解题分析】根据条件,列出满足条件的不等式,求的取值范围.【题目详解】曲线表示交点在轴的椭圆,,解得:.故选A【题目点拨】本题考查根据椭圆的焦点位置求参数的取值范围,意在考查基本概念,属于基础题型.3、B【解题分析】由交集定义直接求解即可.【题目详解】集合,,则.故选B.【题目点拨】本题主要考查了集合的交集运算,属于基础题.4、B【解题分析】利用椭圆的定义及即可得到答案.【题目详解】由椭圆的定义,,焦距,所以的周长为.故选:B5、A【解题分析】分析可知直线与曲线在上的图象有两个交点,令可得出,令,问题转化为直线与曲线有两个交点,利用导数分析函数的单调性与极值,数形结合可得出实数的取值范围.【题目详解】当时,,,此时两个函数的图象无交点;当时,由得,可得,令,其中,则直线与曲线有两个交点,,当时,,此时函数单调递增,当时,,此时函数单调递减,则,且当时,,作出直线与曲线如下图所示:由图可知,当时,即当时,指数函数(且)与三次函数的图象恰好有两个不同的交点.故选:A.6、C【解题分析】当平面时,三棱锥体积最大,根据棱长与球半径关系即可求出球半径,从而求出表面积.【题目详解】当平面时,三棱锥体积最大.又,则三棱锥体积,解得;故表面积.故选:C.【题目点拨】关键点点睛:本题考查三棱锥与球的组合体的综合问题,本题的关键是判断当平面时,三棱锥体积最大.7、B【解题分析】根据椭圆方程及其性质有,求解即可.【题目详解】由题设,,整理得,可得.故选:B8、C【解题分析】按照分层抽样的定义进行抽取.【题目详解】按照分层抽样的定义有,粮食类:植物油类:动物性食品类:果蔬类=4:1:3:2,抽20个出来,则粮食类8个,植物油类2个,动物性食品类6个,果蔬类4个,则抽取的植物油类与果蔬类食品种数之和是6个.故选:C.9、B【解题分析】过的直线的斜率存在和不存在两种情况分别讨论即可得出答案.【题目详解】易知过点,且斜率不存在的直线为,满足与抛物线只有一个公共点.当直线的斜率存在时,设直线方程为,与联立得,当时,方程有一个解,即直线与扰物线只有一个公共点.故满足题意的直线有2条.故选:B10、A【解题分析】根据图象,结合导函数的正负性、极值的定义逐一判断即可.【题目详解】由图象可知,当时,;当时,,在上单调递增,在上单调递减,可知B错误,A正确;是极大值点,没有极小值,和不是函数的极值点,可知C,D错误故选:A11、B【解题分析】利用组合数计算出正确答案.【题目详解】甲乙两类课程都有选择的不同选法种数为.故选:B12、B【解题分析】先考虑平面上的情况:只有三个点的情况成立;再考虑空间里,只有四个点的情况成立,注意运用外接球和三角形三边的关系,即可判断解:考虑平面上,3个点两两距离相等,构成等边三角形,成立;4个点两两距离相等,由三角形的两边之和大于第三边,则不成立;n大于4,也不成立;空间中,4个点两两距离相等,构成一个正四面体,成立;若n>4,由于任三点不共线,当n=5时,考虑四个点构成的正四面体,第五个点,与它们距离相等,必为正四面体的外接球的球心,由三角形的两边之和大于三边,故不成立;同理n>5,不成立故选B点评:本题考查空间几何体的特征,主要考查空间两点的距离相等的情况,注意结合外接球和三角形的两边与第三边的关系,属于中档题和易错题二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】利用点差法可求得的值,利用离心率公式的值.【题目详解】设点、,则,由已知可得,由题意可得,将两个等式相减得,所以,,因此,.故答案为:.14、【解题分析】由且为非零向量可直接构造方程求得,进而得到结果.【题目详解】由题意知:,,解得:(舍)或,.故答案为:.15、相交【解题分析】把两个圆的方程化为标准方程,分别找出两圆的圆心坐标和半径,利用两点间的距离公式求出两圆心的距离,与半径和与差的关系比较即可知两圆位置关系.【题目详解】化为,化为,则两圆圆心分别为:,,半径分别为:,圆心距为,,所以两圆相交.故答案为:相交.16、【解题分析】根据导数的性质,结合常变量分离法进行求解即可.【题目详解】,因为在上是减函数,所以在上恒成立,即,当时,的最小值为,所以,故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),,,(2)证明见解析,【解题分析】(1)根据题意可得第一周使用A密码,第二周使用A密码的概率为0,第三周使用A密码的概率为,以此类推;(2)根据题意可知第周从剩下的四种密码中随机选用一种,恰好选到A密码的概率为,进而可得,结合等比数列的定义可知为等比数列,利用等比数列的通项公式即可求出结果.【小问1详解】,,,【小问2详解】第周使用A密码,则第周必不使用A密码(概率为),然后第周从剩下的四种密码中随机选用一种,恰好选到A密码的概率为故,即故为等比数列且,公比故,故18、(1);(2)和【解题分析】(1)先求出,再写出二项式展开式的通项,令即可求解;(2)设第项系数最大,则,即可解得的值,进而可得展开式中系数最大的项.【题目详解】(1)由题意可得:,得,的展开式通项为,,要求展开式中有理项,只需令,所以所以有理项有5项,(2)设第项系数最大,则,即,即,解得:,因为,所以或所以,所以展开式中系数最大的项为和.【题目点拨】解二项式的题关键是求二项式展开式的通项,求有理项需要让的指数位置是整数,求展开式中系数最大的项需要满足第项的系数大于等于第项的系数,第项的系数大于等于第项的系数,属于中档题19、(1);(2).【解题分析】(1)由题设,原不等式等价于,分类讨论即可得出结论;(2)不等式对任意恒成立,即,即可求实数a的取值范围.【题目详解】(1)当时,原不等式等价于,当时,,解得,即;当时,恒成立,即;当时,,解得,即;综上,不等式的解集为;(2),,即或,解得,∴a取值范围是.20、(1),;(2)【解题分析】(1)由已知利用递推公式,可得,代入分别可求数列的首项,公比,从而可求.(2)由(1)可得,利用乘“公比”错位相减法求和【题目详解】解:(1)当时,,当时,满足上式,故的通项式为设的公比为,由已知条件知,,,所以,,即(2),两式相减得:【题目点拨】本题考查等差数列、等比数列的求法,错位相减法求数列通项,属于中档题.21、(1)(2)存在;【解题分析】(1)设,利用向量坐标运算求出p即可;(2)设直线MC,MD的斜率分别为,,利用坐标计算恒成立,即可求解.【小问1详解】抛物线的焦点为,设,则,因为,所以,得所以抛物线E的方程为【小问2详解】假设在x轴上存在定点,使得x轴平分设直线的方程为,设点,,联立,可得∵恒成立,∴,设直线MC,MD的斜率分别为,,则由定点,使得x轴平分,则,所以把根与系数的关系代入可得,得故存在满足题意.综上所述,在x轴上存在定点,使得x轴平分22、(1);(2)相切,证明过程、图形见解析.【解题分析】(1)根据抛物线的准线方程,结合抛物线标准方程进行求解即可;(2)设出直线AB的方程与抛物线方程联立,利用一元二次方程根与系数关系,结合圆的性质进行求解即可.【小问1详解】因为抛物线C的顶点在坐标原点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 教育学理论探析
- 共青团100周年主题模板
- 2025-2030中国喷气发动机行业需求分析及前景创新发展策略建议报告
- 2025-2030中国双酚F(BPF)行业发展形势及投资效益分析报告
- 2025-2030中国单质肥行业现状动态及发展趋势研究报告
- 2025-2030中国光动力美容仪行业发展趋势及市场前景预测报告
- 2025-2030中国低碳钢筋市场竞争对手调研及供需平衡趋势预测报告
- 2025-2030中国代用燃料汽车行业市场发展趋势与前景展望战略研究报告
- 天车安全考试试题及答案
- 大连生阳极项目投资分析报告模板范本
- 暑期社区教育活动方案
- 建筑大厦工程技术难题与解决方案
- 汽车车身涂胶设计规范
- 法医职称考试试题及答案
- 2025年危险化学品安全作业特种作业操作证考试试卷备考攻略
- 2025年人工智能教育应用专业考试试题及答案
- 银行保密知识培训课件
- 高校学科重塑路径研究
- DB12T 1444-2025 博物馆消防安全管理导则
- 硫化氢题库及答案
- 2025年房地产销售经理季度工作总结及年度计划
评论
0/150
提交评论