




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
阳江市重点中学2024学年高二上数学期末调研模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知等比数列的首项为1,公比为2,则=()A. B.C. D.2.二次方程的两根为2,,那么关于的不等式的解集为()A.或 B.或C. D.3.若两条平行线与之间的距离是2,则m的值为()A.或11 B.或10C.或12 D.或114.蟋蟀鸣叫可以说是大自然优美、和谐的音乐,殊不知蟋蟀鸣叫的频率(每分钟鸣叫的次数)与气温(单位:℃)存在着较强的线性相关关系.某地观测人员根据如表的观测数据,建立了关于的线性回归方程,则下列说法不正确的是()(次数/分钟)2030405060(℃)2527.52932.536A.的值是20B.变量,呈正相关关系C.若的值增加1,则的值约增加0.25D.当蟋蟀52次/分鸣叫时,该地当时的气温预报值为33.5℃5.抛物线的焦点到准线的距离是A. B.1C. D.6.某地政府为落实疫情防控常态化,不定时从当地780名公务员中,采用系统抽样的方法抽取30人做核酸检测.把这批公务员按001到780进行编号,若054号被抽中,则下列编号也被抽中的是()A.076 B.104C.390 D.5227.数列满足,且,是函数的极值点,则的值是()A.2 B.3C.4 D.58.已知圆和椭圆.直线与圆交于、两点,与椭圆交于、两点.若时,的取值范围是,则椭圆的离心率为()A. B.C. D.9.已知空间向量,则()A. B.C. D.10.若正方体ABCDA1B1C1D1的棱长为1,则直线A1C1到平面ACD1的距离为()A.1 B.C. D.11.已知椭圆是椭圆上关于原点对称的两点,设以为对角线的椭圆内接平行四边形的一组邻边斜率分别为,则()A.1 B.C. D.12.我国古代数学著作《九章算术》有如下问题:“今有金箠,长五尺,斩本一尺,重四斤,斩末一尺,重二斤”意思是:“现有一根金杖,长5尺,头部1尺,重4斤;尾部1尺,重2斤;若该金杖从头到尾每一尺重量构成等差数列,其中重量为,则的值为()A.4 B.12C.15 D.18二、填空题:本题共4小题,每小题5分,共20分。13.设双曲线的焦点为,点为上一点,,则为_____.14.经过点作直线,直线与连接两点线段总有公共点,则直线的斜率的取值范围是________15.已知双曲线:的左、右焦点分别为,,为的右支上一点,且,则的离心率为___________.16.已知函数,若有两个零点,则的范围是______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在平面直角坐标系中,圆C:,直线l:(1)若直线l与圆C相切于点N,求切点N的坐标;(2)若,直线l上有且仅有一点A满足:过点A作圆C的两条切线AP、AQ,切点分别为P,Q,且使得四边形APCQ为正方形,求m的值18.(12分)已知梯形如图甲所示,其中,,,四边形是边长为1正方形,沿将四边形折起,使得平面平面,得到如图乙所示的几何体(1)求证:平面;(2)若点在线段上,且与平面所成角的正弦值为,求线段的长度.19.(12分)设关于x的不等式的解集为A,关于x的不等式的解集为B(1)求集合A,B;(2)若是的必要不充分条件,求实数m的取值范围20.(12分)篮天技校为了了解车床班学生的操作能力,设计了一个考查方案;每个考生从道备选题中一次性随机抽取道题,按照题目要求独立完成零件加工,规定:至少正确加工完成其中个零件方可通过.道备选题中,考生甲有个零件能正确加工完成,个零件不能完成;考生乙每个零件正确完成的概率都是,且每个零件正确加工完成与否互不影响(1)分别求甲、乙两位考生正确加工完成零件数的概率分布列(列出分布列表);(2)试从甲、乙两位考生正确加工完成零件数的数学期望及两人通过考查的概率分析比较两位考生的操作能力21.(12分)设椭圆方程为,短轴长,____________.请在①与双曲线有相同的焦点,②离心率,③这三个条件中任选一个补充在上面的横线上,完成以下问题.(1)求椭圆的标准方程;(2)求以点为中点的弦所在的直线方程.22.(10分)如图,在棱长为3的正方体中,分别是上的点且(1)求证:;(2)求平面与平面的夹角的余弦值
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】数列是首项为1,公比为4的等比数列,然后可算出答案.【题目详解】因为等比数列的首项为1,公比为2,所以数列是首项为1,公比为4的等比数列所以故选:D2、B【解题分析】根据,确定二次函数的图象开口方向,再由二次方程的两根为2,,写出不等式的解集.【题目详解】因为二次方程的两根为2,,又二次函数的图象开口向上,所以不等式的解集为或,故选:B3、A【解题分析】利用平行线间距离公式进行求解即可.【题目详解】因为两条平行线与之间的距离是2,所以,或,故选:A4、D【解题分析】根据样本中心过经过线性回归方程、正相关的性质和线性回归方程的意义进行判断即可.【题目详解】由题意,得,,则,故A正确;由线性回归方程可知,,变量,呈正相关关系,故B正确;若的值增加1,则的值约增加0.25,故C正确;当时,,故D错误.故选:D.5、D【解题分析】,,所以抛物线的焦点到其准线的距离是,故选D.6、D【解题分析】根据题意,求得组数与抽中编号的对应关系,即可判断和选择.【题目详解】从780名公务员中,采用系统抽样的方法抽取30人做核酸检测,故需要分为组,每组人,设第组抽中的编号为,设,由题可知:,故可得,故可得.当时,.故选:.7、C【解题分析】利用导数即可求出函数的极值点,再利用等差数列的性质及其对数的运算性质求解即可【题目详解】由,得,因为,是函数的极值点,所以,是方程两个实根,所以,因为数列满足,所以,所以数列为等差数列,所以,所以,故选:C8、C【解题分析】由题设,根据圆与椭圆的对称性,假设在第一象限可得,结合已知有,进而求椭圆的离心率.【题目详解】由题设,圆与椭圆的如下图示:又时,的取值范围是,结合圆与椭圆的对称性,不妨假设在第一象限,∴从0逐渐增大至无穷大时,,故,∴故选:C.9、C【解题分析】A利用向量模长的坐标表示判断;B根据向量平行的判定,是否存在实数使即可判断;C向量数量积的坐标表示求即可判断;D利用向量坐标的线性运算及数量积的坐标表示求即可.【题目详解】因为,所以A不正确:因为不存在实数使,所以B不正确;因为,故,所以C正确;因为,所以,所以D不正确故选:C10、B【解题分析】先证明点A1到平面ACD1的距离即为直线A1C1到平面ACD1的距离,再建立空间直角坐标系,利用向量法求解.【题目详解】因为平面平面,所以A1C1//平面ACD1,则点A1到平面ACD1的距离即为直线A1C1到平面ACD1的距离.建立如图所示的空间直角坐标系,易知=(0,0,1),由题得平面,所以平面,所以,同理,因为平面,所以平面,所以是平面一个法向量,所以平面ACD1的一个法向量为=(1,1,1),故所求的距离为.故选:B【题目点拨】方法点睛:求点到平面的距离常用的方法有:(1)几何法(找作证指求);(2)向量法;(3)等体积法.要根据已知条件灵活选择方法求解.11、C【解题分析】根据椭圆的对称性和平行四边形的性质进行求解即可.【题目详解】是椭圆上关于原点对称两点,所以不妨设,即,因为平行四边形也是中心对称图形,所以也是椭圆上关于原点对称的两点,所以不妨设,即,,得:,即,故选:C12、C【解题分析】先求出公差,再利用公式可求总重量.【题目详解】设头部一尺重量为,其后每尺重量依次为,由题设有,,故公差为.故中间一尺的重量为所以这5项和为.故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】将方程化为双曲线的标准方程,再利用双曲线的定义进行求解.【题目详解】将化为,所以,,由双曲线的定义,得:,即,所以或(舍)故答案为:.14、【解题分析】求出的斜率,结合图形可得结论【题目详解】,,而,因此,故答案为:15、【解题分析】由双曲线定义可得a,代入点P坐标可得b,然后可解.【题目详解】由题知,故,又点在双曲线上,所以,解得,所以.故答案为:16、【解题分析】利用导数求出函数的最小值,结合函数的图象列式可求出结果.【题目详解】,当时,,在上为增函数,最多只有一个零点,不符合题意;当时,令,得,令,得,所以在上为减函数,在上为增函数,所以在时取得极小值为,也是最小值,因为当趋近于正负无穷时,都是趋近于正无穷,所以要使有两个零点,只要,即就可以了.所以的范围是故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)或(2)3.【解题分析】(1)设切点坐标,由切点和圆心连线与切线垂直以及切点在圆上建立关系式,求解切点坐标即可;(2)由圆的方程可得圆心坐标及半径,由APCQ为正方形,可得|AC|=可得圆心到直线的距离为,可得m的值【小问1详解】解:设切点为,则有,解得:或x0=-2+1y0=-2,所以切点的坐标为或【小问2详解】解:圆C:的圆心(1,0),半径r=2,设,由题意可得,由四边形APCQ为正方形,可得|AC|=,即,由题意直线l⊥AC,圆C:(x﹣1)2+y2=4,则圆心(1,0)到直线的距离,可得,m>0,解得m=3.18、(1)证明过程见解析;(2).【解题分析】(1)根据面面垂直的性质定理进行证明即可;(2)建立空间直角坐标系,利用空间向量夹角公式进行求解即可.【小问1详解】∵平面平面,平面平面平面,,∴平面;【小问2详解】(2)建系如图:设平面的法向量,,,,,,则,设,,,解得或(舍),,∴.19、(1),(2)【解题分析】(1)直接解不等式即可,(2)由题意可得,从而可得解不等式组可求得答案【小问1详解】由,得,故由,得,故【小问2详解】依题意得:,∴解得∴m的取值范围为20、(1)分布列见解析(2)甲的试验操作能力较强,理由见解析【解题分析】(1)设考生甲、乙正确加工完成零件的个数分别为、,则的可能取值有、、,的可能取值有、、、,且,计算出两个随机变量在不同取值下的概率,可得出这两个随机变量的概率分布列;(2)计算出、、、的值,比较、的大小,以及、的大小,由此可得出结论.【小问1详解】解:设考生甲、乙正确加工完成零件的个数分别为、,则的可能取值有、、,的可能取值有、、、,且,,,,所以,考生甲正确加工完成零件数的概率分布列如下表所示:,,,,所以,考生乙正确加工完成零件数的概率分布列如下表所示:【小问2详解】解:,,,,所以,,从做对题的数学期望分析,两人水平相当;从通过考查的概率分析,甲通过的可能性大,因此可以判断甲的试验操作能力较强.21、(1)答案见解析,.(2).【解题分析】(1)若选①:求得双曲线得双曲线的焦点得出椭圆的,再由,可求得椭圆的标准方程;若选②:根据已知条件和椭圆的离心率可求得,从而得椭圆的标准方程;若选③:由已知建立方程,求解可求得,从而得椭圆的标准方程.(2)设直线的斜率为k,所求的直线方程为,代入椭圆的方程并整理得,设直线与椭圆的交点为,由根与系数的关系和中点坐标公式可求得答案.【小问1详解】解:若选①:由双曲线得双曲线的焦点和,因为椭圆与双曲线有相同的焦点,所以椭圆的,又,所以,所以,所以椭圆的标准方程为;若选②:因为,所以,又离心率,所以,即,解得,所以椭圆的标准方程为;若选③:因为,所以,即,又,解得,,所以椭圆的标准方程为;【小问2详解】解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 冷库保鲜库租赁合同协议书
- 劳动仲裁申请书范本
- 煤矿安全培训自查表课件
- 急诊科仪器课件
- 急诊病人送去病房课件
- 急诊抢救工作与流程
- 煤矿安全培训管理员平台课件
- 补气血培训课件
- 炭素煅烧工异常处理考核试卷及答案
- 海水珍珠养殖工设备调试考核试卷及答案
- 新产品质量控制方案
- 普通高中物理课程标准解读
- 张拉应力及油表读数计算的表格
- 香港著名导演介绍
- 数独题目高级50题典型题带答案
- 油漆油墨配料岗位安全生产操作规程范文
- 公对公打款合同
- 商丘市金马药业有限公司年产60万件中成药品生产项目环境影响报告
- 员工上下班交通安全培训
- PTN原理、PTN设备和工程维护
- 钢结构分包单位考察文件(项目考察表及生产厂考察内容提示要点)
评论
0/150
提交评论