2024届吉林省延边朝鲜族自治州汪清四中数学高二上期末学业质量监测模拟试题含解析_第1页
2024届吉林省延边朝鲜族自治州汪清四中数学高二上期末学业质量监测模拟试题含解析_第2页
2024届吉林省延边朝鲜族自治州汪清四中数学高二上期末学业质量监测模拟试题含解析_第3页
2024届吉林省延边朝鲜族自治州汪清四中数学高二上期末学业质量监测模拟试题含解析_第4页
2024届吉林省延边朝鲜族自治州汪清四中数学高二上期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届吉林省延边朝鲜族自治州汪清四中数学高二上期末学业质量监测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.音乐与数学有着密切的联系,我国春秋时期有个著名的“三分损益法”:以“宫”为基本音,“宫”经过一次“损”,频率变为原来的,得到“微”,“微”经过一次“益”,频率变为原来的,得到“商”……依此规律损益交替变化,获得了“宫”“微”“商”“羽”“角”五个音阶.据此可推得()A.“商”“羽”“角”的频率成公比为的等比数列B.“宫”“微”“商”的频率成公比为的等比数列C.“宫”“商”“角”的频率成公比为的等比数列D.“角”“商”“宫”的频率成公比为的等比数列2.等差数列的首项为正数,其前n项和为.现有下列命题,其中是假命题的有()A.若有最大值,则数列的公差小于0B.若,则使的最大的n为18C.若,,则中最大D.若,,则数列中的最小项是第9项3.下列数列中成等差数列的是()A. B.C. D.4.方程表示椭圆的充分不必要条件可以是()A. B.C. D.5.圆截直线所得弦的最短长度为()A.2 B.C. D.46.若,都为正实数,,则的最大值是()A. B.C. D.7.已知是等比数列,,,则()A. B.C. D.8.若正整数N除以正整数m后的余数为n,则记为,如.如图所示的程序框图的算法源于我国古代闻名中外的“中国剩余定理”.执行该程序框图,则输出的i等于()A.7 B.10C.13 D.169.直线在y轴上的截距为()A. B.C. D.10.已知点在抛物线上,则点到抛物线焦点的距离为()A.1 B.2C.3 D.411.通过随机询问110名不同的大学生是否爱好某项运动,得到如下的列联表:男女总计爱好402060不爱好203050总计6050110由附表:0.0500.0100.0013.8416.63510.828参照附表,得到的正确结论是()A.有99%以上的把握认为“爱好该项运动与性别有关”B.有99%以上的把握认为“爱好该项运动与性别无关”C.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”D.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”12.函数的导函数的图象如图所示,则下列说法正确的是()A.函数在上单调递增B.函数的递减区间为C.函数在处取得极大值D.函数在处取得极小值二、填空题:本题共4小题,每小题5分,共20分。13.若、是双曲线的左右焦点,过的直线与双曲线的左右两支分别交于,两点.若为等边三角形,则双曲线的离心率为________.14.已知函数,若存在唯一零点,则的取值范围是__________.15.已知函数在R上连续且可导,为偶函数且,其导函数满足,则不等式的解集为___.16.设,若不等式在上恒成立,则的取值范围是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知中,内角的对边分别为,且满足.(1)求的值;(2)若,求面积的最大值.18.(12分)设等差数列的前项和为,已知,.(1)求数列的通项公式;(2)求数列的前项和.19.(12分)已知函数的图象在点处的切线与直线平行(是自然对数的底数).(1)求的值;(2)若在上恒成立,求实数的取值范围.20.(12分)某校高二年级全体学生参加了一次数学测试,学校利用简单随机抽样的方法从甲班、乙班各抽取五名同学的数学测试成绩(单位:分)得到如下茎叶图,若甲、乙两班数据的中位数相等且平均数也相等.(1)求出茎叶图中m和n的值:(2)若从86分以上(不含86分)的同学中随机抽出两名,求此两人都来自甲班的概率.21.(12分)已知圆的圆心为,且经过点.(1)求圆的标准方程;(2)已知直线与圆相交于、两点,求.22.(10分)已知椭圆的离心率是,且过点.(1)求椭圆的标准方程;(2)若直线与椭圆交于A、B两点,线段的中点为,为坐标原点,且,求面积的最大值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】根据文化知识,分别求出相对应的频率,即可判断出结果【题目详解】设“宫”的频率为a,由题意经过一次“损”,可得“徵”的频率为a,“徵”经过一次“益”,可得“商”的频率为a,“商”经过一次“损”,可得“羽”频率为a,最后“羽”经过一次“益”,可得“角”的频率是a,由于a,a,a成等比数列,所以“宫、商、角”的频率成等比数列,且公比为,故选:C【题目点拨】本题考查等比数列的定义,考查学生的运算能力和转换能力及思维能力,属于基础题2、B【解题分析】由有最大值可判断A;由,可得,,利用可判断BC;,得,,可判断D.【题目详解】对于选项A,∵有最大值,∴等差数列一定有负数项,∴等差数列为递减数列,故公差小于0,故选项A正确;对于选项B,∵,且,∴,,∴,,则使的最大的n为17,故选项B错误;对于选项C,∵,,∴,,故中最大,故选项C正确;对于选项D,∵,,∴,,故数列中的最小项是第9项,故选项D正确.故选:B.3、C【解题分析】利用等差数列定义,逐一验证各个选项即可判断作答.【题目详解】对于A,,A不是等差数列;对于B,,B不是等差数列;对于C,,C是等差数列;对于D,,D不是等差数列.故选:C4、D【解题分析】由“方程表示椭圆”可求得实数的取值范围,结合充分不必要条件的定义可得出结论.【题目详解】若方程表示椭圆,则,解得或.故方程表示椭圆的充分不必要条件可以是.故选:D.5、A【解题分析】由题知直线过定点,且在圆内,进而求解最值即可.【题目详解】解:将直线化为,所以联立方程得所以直线过定点将化为标准方程得,即圆心为,半径为,由于,所以点在圆内,所以点与圆圆心间的距离为,所以圆截直线所得弦的最短长度为故选:A6、B【解题分析】由基本不等式,结合题中条件,直接求解,即可得出结果.【题目详解】因为,都为正实数,,所以,当且仅当,即时,取最大值.故选:D7、D【解题分析】由,,可求出公比,从而可求出等比数的通项公式,则可求出,得数列是一个等比数列,然后利用等比数的求和公式可求得答案【题目详解】由题得.所以,所以.所以,所以数列是一个等比数列.所以=.故选:D8、C【解题分析】根据“中国剩余定理”,进而依次执行循环体,最后求得答案.【题目详解】由题意,第一步:,余数不为1;第二步:,余数不为1;第三步:,余数为1,执行第二个判断框,余数不为2;第四步:,执行第一个判断框,余数为1,执行第二个判断框,余数为2.输出的i值为13.故选:C.9、D【解题分析】将代入直线方程求y值即可.【题目详解】令,则,得.所以直线在y轴上的截距为.故选:D10、B【解题分析】先求出抛物线方程,焦点坐标,再用两点间距离公式进行求解.【题目详解】将代入抛物线中得:,解得:,所以抛物线方程为,焦点坐标为,所以点到抛物线焦点的距离为故选:B11、A【解题分析】由,而,故由独立性检验的意义可知选A12、C【解题分析】根据函数单调性与导数之间的关系及极值的定义结合图像即可得出答案.【题目详解】解:根据函数的导函数的图象可得,当时,,故函数在和上递减,当时,,故函数在和上递增,所以函数在和处取得极小值,在处取得极大值,故ABD错误,C正确.故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】根据双曲线的定义算出△AF1F2中,|AF1|=2a,|AF2|=4a,由△ABF2是等边三角形得∠F1AF2=120°,利用余弦定理算出c=a,结合双曲线离心率公式即可算出双曲线C的离心率.【题目详解】因为△ABF2为等边三角形,可知,A为双曲线上一点,,B为双曲线上一点,则,即,∴由,则,已知,在△F1AF2中应用余弦定理得:,得c2=7a2,则e2=7⇒e=故答案为:【题目点拨】方法点睛:求双曲线的离心率,常常不能经过条件直接得到a,c的值,这时可将或视为一个整体,把关系式转化为关于或的方程,从而得到离心率的值.14、【解题分析】求得函数的导数,得到是的唯一零点,转化为方程无实数根或只存在实数根,进而转化为和的图象至多有一个交点(且如果有交点,交点必须在处),利用导数求得函数的单调性和最小值,即可求解.【题目详解】由题意,函数,可得,因为存在唯一零点,所以是的唯一零点,则关于的方程无实数根或只存在实数根,所以函数和的图象至多有一个交点(且如果有交点,交点必须在处),又由,当时,,单调递减;当时,,单调递增,所以,所以,即即的取值范围是.故答案为:.15、【解题分析】由已知条件可得图象关于对称,在上递增,在上递减,然后分四种情况讨论求解即可【题目详解】因为为偶函数,所以的图象关于轴对称,所以的图象关于对称,因为,所以当时,,当时,,所以在上递增,在上递减,由,得,或,或,或,解得,或,或,或,综上,,所以等式的解集为故答案为:16、【解题分析】构造,利用导数求其最大值,结合已知不等式恒成立,即可确定的范围.【题目详解】令,则且,若得:;若得:;所以在上递增,在上递减,故,要使在上恒成立,即.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)2;(2).【解题分析】(1)利用正弦定理以及逆用两角和的正弦公式得出,而,即可求出的值;(2)根据题意,由余弦定理得,再根据基本不等式求得,当且仅当时取得等号,即可求出面积的最大值.【小问1详解】解:由题意得,由正弦定理得:,即,即,因为,所以【小问2详解】解:由余弦定理,即,由基本不等式得:,即,当且仅当时取得等号,,所以面积的最大值为18、(1)(2)【解题分析】(1)根据已知条件求得等差数列的首项和公差,由此求得.(2)利用裂项求和法求得.【小问1详解】设等差数列的公差为,则,解得,.∴.【小问2详解】由(1)知.∴.∴.19、(1)(2)【解题分析】(1)求出函数的导函数,根据题意结合导数的几何意义列出方程,解之即可得解;(2)在上恒成立,即在上恒成立,从而,令,利用导数求出函数的最小值,即可求得实数的取值范围【小问1详解】解:,因为函数的图象在点处的切线与直线平行,所以,解得;【小问2详解】解:在上恒成立,即在上恒成立,,,令,则,当时,;当时,,函数在上单调递减,有上单调递增,,,即实数的取值范围是20、(1),(2)【解题分析】(1)根据茎叶图得甲班中位数为,由此能求出,根据由,且,能求出.(2)甲班86分以上有2人,乙班86分以有2人,从86分以上(不含86分)的同学中随机抽出两名,用列举法写出基本事件总数,再利用古典概型的概率计算公式即可求解.【小问1详解】根据茎叶图可知1班中位数为86,则,又∵,且故【小问2详解】由(1)可知,甲班86分以上有2人,乙班86以上有2人设甲班86分以上2人为,,乙班86分以上2人为,,从中任取两名同学共有,,,,,共有6组基本事件,且每组出现都是等可能的记:“从86分以上(不含86分)的同学中随机抽出两名,两人都来自甲班”为事件M,事件M包括:共1个基本事件,由古典概型的计算概率的公式知∴所以两人都来自甲班的概率为21、(1);(2).【解题分析】(1)求出圆的半径长,结合圆心坐标可得出圆的标准方程;(2)求出圆心到直线的距离,利用勾股定理可求得.小问1详解】解:圆的半径为,因此,圆的标准方程为.【小问2详解】解:圆心到直线的距离为,因此,.22、(1);(2)2.【解题分析】(1)根据已知条件列出关于a、b、c的方程组即可求得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论