甘肃省通渭县2024学年高二上数学期末综合测试试题含解析_第1页
甘肃省通渭县2024学年高二上数学期末综合测试试题含解析_第2页
甘肃省通渭县2024学年高二上数学期末综合测试试题含解析_第3页
甘肃省通渭县2024学年高二上数学期末综合测试试题含解析_第4页
甘肃省通渭县2024学年高二上数学期末综合测试试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

甘肃省通渭县2024学年高二上数学期末综合测试试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若球的半径为,一个截面圆的面积是,则球心到截面圆心的距离是()A. B.C. D.2.渐近线方程为的双曲线的离心率是()A.1 B.C. D.23.已知抛物线上一横坐标为5的点到焦点的距离为6,且该抛物线的准线与双曲线(,)的两条渐近线所围成的三角形面积为,则双曲线C的离心率为()A.3 B.4C.6 D.94.一道数学试题,甲、乙两位同学独立完成,设命题是“甲同学解出试题”,命题是“乙同学解出试题”,则命题“至少一位同学解出试题”可表示为()A. B.C. D.5.已知等差数列满足,则等于()A. B.C. D.6.在等差数列中,,表示数列的前项和,则()A.43 B.44C.45 D.467.如图,在平行六面体(底面为平行四边形的四棱柱)中,E为延长线上一点,,则=()A. B.C. D.8.已知直线过点,且其方向向量,则直线的方程为()A. B.C. D.9.已知点,,直线:与线段相交,则实数的取值范围是()A.或 B.或C. D.10.长方体中,,,,为侧面内(含边界)的动点,且满足,则四棱锥体积的最小值为()A. B.C. D.11.已知等差数列的前n项和为,且,,若(,且),则i的取值集合是()A. B.C. D.12.曲线与曲线的A.长轴长相等 B.短轴长相等C.离心率相等 D.焦距相等二、填空题:本题共4小题,每小题5分,共20分。13.过直线上一动点P作圆的两条切线,切点分别为A,B,则四边形PACB面积的最小值为______14.已知双曲线过点,且渐近线方程为,则该双曲线的标准方程为____________________.15.求值______.16.经过两点的双曲线的标准方程是________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某高校在今年的自主招生考试成绩中随机抽取100名考生的笔试成绩,分为5组制出频率分布表如图所示.组号分组频数频率150052350.35330b4cd5100.1(1)求b,c,d的值;(2)该校决定在成绩较好的3、4、5组用分层抽样抽取6名学生进行面试,则每组应各抽多少名学生?(3)在(2)的前提下,从抽到6名学生中再随机抽取2名被甲考官面试,求这2名学生来自同一组的概率.18.(12分)已知抛物线的顶点是坐标原点,焦点在轴上,且抛物线上的点到焦点的距离是5.(1)求该抛物线的标准方程和的值;(2)若过点的直线与该抛物线交于,两点,求证:为定值.19.(12分)已知椭圆,斜率为的动直线与椭圆交于A,B两点,且直线与圆相切.(1)若,求直线的方程;(2)求三角形的面积的取值范围.20.(12分)已知函数,曲线y=f(x)在点(0,4)处的切线方程为(1)求a,b的值;(2)求f(x)的极大值21.(12分)在等差数列中,已知公差,且成等比数列(1)求数列的通项公式;(2)记,求数列的前项和22.(10分)在平面直角坐标系xOy中,直线l的参数方程为(t为参数),直线l与x轴交于点P.以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为(1)求直线l的普通方程与曲线C的直角坐标方程;(2)若直线l与曲线C相交于A,B两点,求的值

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】由题意可解出截面圆的半径,然后利用勾股定理求解球心与截面圆圆心的距离【题目详解】由截面圆的面积为可知,截面圆的半径为,则球心到截面圆心的距离为故选:C【题目点拨】解答本题的关键点在于,球心与截面圆圆心的连线垂直于截面2、B【解题分析】根据双曲线渐近线方程可确定a,b的关系,进而求得离心率.【题目详解】因为双曲线近线方程为,故双曲线为等轴双曲线,则a=b,故离心率为,则,故选:B.3、A【解题分析】由题意求得抛物线的准线方程为,进而得到准线与双曲线C的渐近线围成的三角形面积,求得,再结合和离心率的定义,即可求解.【题目详解】由题意,抛物线上一横坐标为5的点到焦点的距离为6,根据抛物线定义,可得,即,所以抛物线的准线方程为,又由双曲线C的两条渐近线方程为,则抛物线的准线与双曲线C的两条渐近线围成的三角形面积为,解得,又由,可得,所以双曲线C的离心率.故选:A.4、D【解题分析】根据“或命题”的定义即可求得答案.【题目详解】“至少一位同学解出试题”的意思是“甲同学解出试题,或乙同学解出试题”.故选:D.5、A【解题分析】利用等差中项求出的值,进而可求得的值.【题目详解】因为得,因此,.故选:A.6、C【解题分析】根据等差数列的性质,求得,结合等差数列的求和公式,即可求解.【题目详解】由等差数列中,满足,根据等差数列的性质,可得,所以,则.故选:C.7、A【解题分析】根据空间向量的加减法运算法则,直接写出向量的表达式,即可得答案.【题目详解】=,故选:A.8、D【解题分析】根据题意和直线的点方向式方程即可得出结果.【题目详解】因为直线过点,且方向向量为,由直线的点方向式方程,可得直线的方程为:,整理,得.故选:D9、A【解题分析】由可求出直线过定点,作出图象,求出和,数形结合可得或,即可求解.【题目详解】由可得:,由可得,所以直线:过定点,由可得,作出图象如图所示:,,若直线与线段相交,则或,解得或,所以实数的取值范围是或,故选:A.10、D【解题分析】取的中点,以点为坐标原点,、、的方向分别为、、轴的正方向建立空间直角坐标系,分析可知点的轨迹是以点、为焦点的椭圆,求出椭圆的方程,可知当点为椭圆与棱或的交点时,点到平面的距离取最小值,由此可求得四棱锥体积的最小值.【题目详解】取的中点,以点为坐标原点,、、的方向分别为、、轴的正方向建立如下图所示的空间直角坐标系,设点,其中,,则、,因为平面,平面,则,所以,,同理可得,所以,,所以点的轨迹是以点、为焦点,且长轴长为的椭圆的一部分,则,,,所以,点的轨迹方程为,点到平面的距离为,当点为曲线与棱或棱的交点时,点到平面的距离取最小值,将代入方程得,因此,四棱锥体积的最小值为.故选:D.11、C【解题分析】首先求出等差数列的首先和公差,然后写出数列即可观察到满足的i的取值集合.【题目详解】设公差为d,由题知,,解得,,所以数列为,故.故选:C.【题目点拨】本题主要考查了等差数列的基本量的求解,属于基础题.12、D【解题分析】分别求出两椭圆的长轴长、短轴长、离心率、焦距,即可判断【题目详解】解:曲线表示焦点在轴上,长轴长10,短轴长为6,离心率为,焦距为8曲线表示焦点在轴上,长轴长为,短轴长为,离心率为,焦距为8对照选项,则正确故选:【题目点拨】本题考查椭圆的方程和性质,考查运算能力,属于基础题二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】当圆心与点的距离最小时,切线长,最小,则四边形的面积最小,此时是点到已知直线的垂线段.然后利用点到直线的距离公式求出圆心到直线的距离,再结合弦长公式和面积公式进行计算即可.【题目详解】解:根据题意可知:当圆心与点的距离最小时,切线长,最小,则四边形的面积最小,此时是点到已知直线的垂线段.圆心到直线的距离为四边形面积的最小值为故答案为:14、【解题分析】依题意,设所求的双曲线的方程为.点为该双曲线上的点,.该双曲线的方程为:,即.故本题正确答案是.15、【解题分析】将原式子变形为:,将代入变形后的式子得到结果即可.【题目详解】将代入变形后的式子得到结果为故答案为:16、【解题分析】设双曲线的标准方程将点坐标代入求参数,即可确定标准方程.【题目详解】令,则,可得,令,则,无解.故双曲线的标准方程是.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),,(2)第三组应抽人,第四组应抽人,第五组应抽人(3)【解题分析】(1)根据频率分布表的数据求出b,c,d的值;(2)三个组共有60人,从而利用分层抽样抽样方法抽取6名学生第三组应抽3人,第四组应抽2人,第五组应抽1人;(3)记第三组抽出的3人分别为,第四组抽出的2人分别为,第五组抽出的1人为,利用列举法结合概率公式得出答案.【小问1详解】由题意得,,【小问2详解】三个组共有60人,所以第三组应抽人,第四组应抽人,第五组应抽人.【小问3详解】记第三组抽出的3人分别为,第四组抽出的2人分别为,第五组抽出的1人为,从这6人中随机抽取2人,基本事件包含,共15个基本事件.其中2人来自同一组的情况有,共4种.所以,2人来自同一组的概率为.18、(1),(2)证明见解析【解题分析】(1)根据点到焦点的距离等于5,利用抛物线的定义求得p,进而得到抛物线方程,然后将点代入抛物线求解;(2)方法一:设直线方程为:,与抛物线方程联立,结合韦达定理,利用数量积的运算求解;方法二:根据直线过点,分直线的斜率不存在时,检验即可;当直线的斜率存在时,设直线方程为:,与抛物线方程联立,结合韦达定理,利用向量的数量积运算求解.【小问1详解】解:∵抛物线焦点在轴上,且过点,∴设抛物线方程为,由抛物线定义知,点到焦点的距离等于5,即点到准线的距离等于5,则,,∴抛物线方程为,又点在抛物线上,,,∴所求抛物线方程为,.【小问2详解】方法一:由于直线过点,可设直线方程为:,由得,设,,则,,所以,即为定值;方法二:由于直线过点,①当直线的斜率不存在时,易得直线的方程为,则由可得,,,所以;②当直线的斜率存在时可设直线方程为:,由得,设,,则,.所以,即为定值.综上,为定值.19、(1)或(2)【解题分析】(1)设直线,利用圆心到直线的距离等于半径,即可得到方程,求出,即可得解;(2)设,,,利用圆心到直线的距离等于半径,得到,再联立直线与椭圆方程,消元列出韦达定理,利用弦长公式表示出,再根据及基本不等式求出,最后再计算直线斜率不存在时三角形的面积,即可得解;【小问1详解】解:圆,圆心为,半径;设直线,即,则,解得,所以或;【小问2详解】解:因为直线的斜率存在,设,,,即,则,所以,即,联立,消元整理得,所以,,所以所以因为,所以,当且仅当,即时取等号,所以,当轴时,取,,则,此时,所以;20、(1)a=4,b=4(2)【解题分析】(1)由题意得到关于的方程组,求解方程组即可求出答案.(2)结合(1)中求得的函数解析式,求导得到的单调性,可得当x=-2时,函数f(x)取得极大值.【小问1详解】由已知得f(0)=4,f′(0)=4,故b=4,a+b=8从而a=4,b=4【小问2详解】由(1)知,,令f′(x)=0得,x=-ln2或x=-2从而当时,f′(x)>0;当x∈(-2,-ln2)时,f′(x)<0故f(x)在(-∞,-2),(-ln2,+∞)上单调递增,在(-2,-ln2)上单调递减当x=-2时,函数f(x)取得极大值,极大值为21、(1)an=n(2)【解题分析】(1)由已知条件可得(d+2)2=2d+7,从而可求出公差,进而可求得数列的通项公式,(2)由(1)得,然后利用错位相减法求【小问1详解】因a1,a2+1,a3+6

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论