湖北省武汉市新洲三中2024学年高二上数学期末监测模拟试题含解析_第1页
湖北省武汉市新洲三中2024学年高二上数学期末监测模拟试题含解析_第2页
湖北省武汉市新洲三中2024学年高二上数学期末监测模拟试题含解析_第3页
湖北省武汉市新洲三中2024学年高二上数学期末监测模拟试题含解析_第4页
湖北省武汉市新洲三中2024学年高二上数学期末监测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖北省武汉市新洲三中2024学年高二上数学期末监测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设函数,当自变量t由2变到2.5时,函数的平均变化率是()A.5.25 B.10.5C.5.5 D.112.在等比数列中,,公比,则()A. B.6C. D.23.已知向量,且,则的值为()A.4 B.2C.3 D.14.等差数列的前项和为,若,,则()A.12 B.18C.21 D.275.三棱柱中,,,,若,则()A. B.C. D.6.已知抛物线的焦点为,抛物线的焦点为,点在上,且,则直线的斜率为A. B.C. D.7.抛物线的焦点到准线的距离是A.2 B.4C. D.8.已知半径为2的圆经过点(5,12),则其圆心到原点的距离的最小值为()A.10 B.11C.12 D.139.已知长方体的底面ABCD是边长为8的正方形,长方体的高为,则与对角面夹角的正弦值等于()A. B.C. D.10.已知函数只有一个零点,则实数的取值范围是()A B.C. D.11.有这样一道题目:“戴氏善屠,日益功倍.初日屠五两,今三十日屠讫,向共屠几何?”其意思为:“有一个姓戴的人善于屠肉,每一天屠完的肉是前一天的2倍,第一天屠了5两肉,共屠了30天,问一共屠了多少两肉?"在这个问题中,该屠夫前5天所屠肉的总两数为()A.35 B.75C.155 D.31512.已知数列是等比数列,,是函数的两个不同零点,则()A.16 B.C.14 D.二、填空题:本题共4小题,每小题5分,共20分。13.已知原命题为“若,则”,则它的逆否命题是__________(填写”真命题”或”假命题”)14.直线恒过定点,则定点坐标为________15.若,,三点共线,则m的值为___________.16.经过点且与双曲线有公共渐近线的双曲线方程为_________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在梯形中,,四边形为矩形,且平面,.(1)求证:;(2)点在线段(不含端点)上运动,设直线与平面所成角为,求的取值范围.18.(12分)已知圆经过,且圆心C在直线上(1)求圆的标准方程;(2)若直线:与圆存在公共点,求实数的取值范围19.(12分)已知是公差不为0的等差数列,其前项和为,,且,,成等比数列.(1)求和;(2)若,数列的前项和为,且对任意的恒成立,求实数的取值范围.20.(12分)已知集合,设(1)若p是q的充分不必要条件,求实数a的取值范围;(2)若¬q是¬p的必要不充分条件,求实数a的取值范围21.(12分)已知数列的前n项和为,,且.(1)求数列的通项公式;(2)在与之间插入n个数,使这个数组成一个公差为的等差数列,求证:.22.(10分)如图,四边形是某半圆柱的轴截面(过上下底面圆心连线的截面),线段是该半圆柱的一条母线,点为线的中点(1)证明:;(2)若,且点到平面的距离为1,求线段的长

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】利用平均变化率的公式即得.【题目详解】∵,∴.故选:B.2、D【解题分析】利用等比数列的通项公式求解【题目详解】由等比数列的通项公式得:.故选:D3、A【解题分析】由题意可得,利用空间向量数量积的坐标表示列方程,解方程即可求解.【题目详解】因为,所以,因为向量,,所以,解得,所以的值为,故选:A.4、B【解题分析】根据等差数列的前项和为具有的性质,即成等差数列,由此列出等式,求得答案.【题目详解】因为为等差数列的前n项和,且,,所以成等差数列,所以,即,解得=18,故选:B.5、A【解题分析】利用空间向量线性运算及基本定理结合图形即可得出答案.【题目详解】解:由,,,若,得.故选:A.6、B【解题分析】根据抛物线的定义,求得p的值,即可得抛物线,的标准方程,求得抛物线的焦点坐标后,再根据斜率公式求解.【题目详解】因为,所以,解得,所以直线的斜率为.故选B.【题目点拨】本题考查了抛物线的定义的应用,考查了抛物线的简单性质,涉及了直线的斜率公式;抛物线上的点到焦点的距离等于其到准线的距离;解题过程中注意焦点的位置.7、D【解题分析】因为抛物线方程可化为,所以抛物线的焦点到准线的距离是,故选D.考点:1、抛物线的标准方程;2、抛物线的几何性质.8、B【解题分析】由条件可得圆心的轨迹是以点为圆心,半径为2的圆,然后可得答案.【题目详解】因为半径为2的圆经过点(5,12),所以圆心的轨迹是以点为圆心,半径为2的圆,所以圆心到原点的距离的最小值为,故选:B9、A【解题分析】建立空间直角坐标系,结合空间向量的夹角坐标公式即可求出线面角的正弦值.【题目详解】连接,建立如图所示的空间直角坐标系∵底面是边长为8的正方形,,∴,,,因为,且,所以平面,∴,平面的法向量,∴与对角面所成角的正弦值为故选:A.10、B【解题分析】将题目转化为函数的图像与的图像只有一个交点,利用导数研究函数的单调性与极值,作出图像,利用数形结合求出的取值范围.【题目详解】由函数只有一个零点,等价于函数的图像与的图像只有一个交点,,求导,令,得当时,,函数在上单调递减;当时,,函数在上单调递增;当时,,函数在上单调递减;故当时,函数取得极小值;当时,函数取得极大值;作出函数图像,如图所示,由图可知,实数的取值范围是故选:B【题目点拨】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.11、C【解题分析】构造等比数列模型,利用等比数列的前项和公式计算可得结果.【题目详解】由题意可得该屠夫每天屠的肉成等比数列,记首项为,公比为,前项和为,所以,,因此前5天所屠肉的总两数为.故选:C.【题目点拨】本题考查了等比数列模型,考查了等比数列的前项和公式,属于基础题.12、B【解题分析】由题意得到,根据等比数列的性质得到,化简,即可求解.【题目详解】由,是函数的两个不同零点,可得,根据等比数列的性质,可得则.故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、真命题【解题分析】先判断原命题的真假,再由逆否命题与原命题是等价命题判断.【题目详解】因为命题“若,则”是真命题,且逆否命题与原命题是等价命题,所以它的逆否命题是真命题,故答案为:真命题14、【解题分析】解方程组可求得定点坐标.【题目详解】直线方程可化为,由,可得.故直线恒过定点.故答案为:.15、【解题分析】根据三点共线与斜率的关系即可得出【题目详解】由,,三点共线,可知所在的直线与所在的直线平行,又,由已知可得,解得故答案为:16、【解题分析】由题意设所求双曲线的方程为,∵点在双曲线上,∴,∴所求的双曲线方程为,即答案:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解题分析】(1)过作,垂足为,利用正余弦定理可证,再利用线线垂足证明线面垂直,进而可得证;(2)以为坐标原点,分别以,,所在直线为,,轴建立空间直角坐标系,利用坐标法求线面夹角的正弦值.【小问1详解】证明:由已知可得四边形是等腰梯形,过作,垂足为,则,在中,,则,可得,在中,由余弦定理可得,,则,,又平面,平面,,,,平面,平面,又为矩形,,则平面,而平面,;【小问2详解】平面,且,以为坐标原点,分别以,,所在直线为,,轴建立空间直角坐标系,则,,,,,设,则,又,设平面的法向量为,由,取,得,又,,,,则.18、(1)(2)【解题分析】(1)因为圆心在直线上,可设圆心坐标为,利用圆心到圆上两点的距离相等列出等式求解即可.(2)直线与圆存在公共点,即圆心到直线的距离小于等于半径,列出不等关系求解即可.【小问1详解】解:因为圆心在直线上,所以设圆心坐标为,因为圆经过,,所以,即:,解方程得,圆心坐标为,半径为,圆的标准方程为:【小问2详解】圆心到直线的距离且直线与圆有公共点即19、(1),;(2).【解题分析】(1)求出,即得数列的和;(2)由题得,再利用分组求和求出,得到,令,判断函数的单调性得解.【题目详解】(1)设数列的公差为,由已知得,,即,整理得,又,,;(2)由题意:,,,令,则,即对任意的恒成立,是单调递增数列,,只需,所以.【题目点拨】方法点睛:求数列的最值,常用数列的单调性求解,求数列的单调性,一般利用定义法作差或作商判断.20、(1)(2)【解题分析】(1)先解出集合A、B,然后根据p是q的充分不必要条件列出不等式组求解.(2)¬q是¬p的必要不充分条件可知q是p的充分不必要条件,然后求解.【小问1详解】解:由题意得:,p是q的充分不必要条件,所以集合A是集合B的真子集∴,即,所以实数a的取值范围.【小问2详解】¬q是¬p的必要不充分条件p是q的必要不充分条件,即q是p的充分不必要条件集合B是集合A的真子集∴,故实数a的取值范围为21、(1)(2)证明见解析【解题分析】(1)根据作差即可得到是以为首项,为公比的等比数列,从而得到数列的通项公式;(2)由(1)可知,,根据等差数列的通项公式得到,即可得到,再令,利用错位相减法求出,即可得证;【小问1详解】解:因为,且,当时,则,所以,当时,,则,即,所以是以为首项,为公比的等比数列,所以;【小问2详解】解:由(1)可知,,因为,所以,所以,令,则,所以,所以,即,所以,即;22、(1)证明见解析;(2).【解题分析】(1)先证明,,利用判定定理证明平面,从而得到;(2)设,利用等体积法,由由,解出a.【题目详解】(1)证明:由题意可知平面,平面∴∵所对为半圆直径∴∴和是平面内

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论