天津杨家口中学2022年高一数学文上学期期末试卷含解析_第1页
天津杨家口中学2022年高一数学文上学期期末试卷含解析_第2页
天津杨家口中学2022年高一数学文上学期期末试卷含解析_第3页
天津杨家口中学2022年高一数学文上学期期末试卷含解析_第4页
天津杨家口中学2022年高一数学文上学期期末试卷含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

天津杨家口中学2022年高一数学文上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.下列命题正确的个数是

)①

④A1

B2

C3

D4参考答案:C2.求下列函数的零点,可以采用二分法的是()A.f(x)=x4B.f(x)=tanx+2(﹣<x<)C.f(x)=cosx﹣1D.f(x)=|2x﹣3|参考答案:A【考点】二分法的定义.【专题】计算题;函数思想;定义法;函数的性质及应用.【分析】求出函数的值域,即可判断选项的正误;【解答】解:f(x)=x4不是单调函数,y≥0,不能用二分法求零点,f(x)=tanx+2是单调函数,y∈R,能用二分法求零点.f(x)=cosx﹣1不是单调函数,y≤0,不能用二分法求零点.f(x)=|2x﹣3|,不是单调函数y≥0,不能用二分法求零点.故选:A.【点评】本题考查函数零点判断,二分法的应用,是基础题.3.已知为第三象限角,则所在的象限是(

).A.第一或第二象限 B.第二或第三象限C.第一或第三象限 D.第二或第四象限参考答案:D试题分析:为第三象限角,当时,当时,在第二或第四象限4.已知正方体的棱长为1,且其顶点都在一个球面上,则该球的表面积为() A.π B. 2π C. 3π D. 4π参考答案:C略5.若三点共线则的值为()A.

B.

C.

D.

参考答案:A略6.下列命题中:①∥存在唯一的实数,使得;②为单位向量,且∥,则;

③;④与共线,与共线,则与共线;

⑤若正确命题的序号是(

)A.①⑤

B.②③

C.②③④

D.①④⑤参考答案:B对于①,当时,∥,但是并不存在唯一实数实数,使得,所以是错误的.对于②,由于和方向可能相同,也可能相反,所以是正确的.对于③,是正确的.对于④,如果显然满足题意,但是与可能不共线,所以是错误的.对于⑤,只能推出,不能推出.所以是错误的.故答案为:B

7.已知扇形的周长为8cm,圆心角为2弧度,则该扇形的面积为()A.8 B. C.4 D.2参考答案:C【考点】G8:扇形面积公式.【分析】直接利用扇形的面积公式进行求解即可.【解答】解:设扇形的半径为r,弧长为l,则扇形的周长为l+2r=8,∴弧长为:αr=2r,∴r=2,根据扇形的面积公式,得S=αr2=4,故选:C.8.若,则的值为(

A.

B.

C.

D.参考答案:B略9.有60件产品,编号为01至60,现从中抽取5件检验,用系统抽样的方法所确定的抽样编号是(

A.5,10,15,20,25B.5,12,31,39,57C.5,15,25,35,45

D.5,17,29,41,53参考答案:D10.已知圆O1:x2+y2=1与圆O2:x2+y2﹣6x+8y+9=0,则两圆的位置关系为()A.相交 B.内切 C.外切 D.相离参考答案:C【考点】圆与圆的位置关系及其判定.【专题】直线与圆.【分析】求出两个圆的圆心与半径,通过弦心距与半径和与差的关系,判断两个圆的位置关系.【解答】解:圆O1:x2+y2=1的圆心(0,0),半径为:1;圆O2:x2+y2﹣6x+8y+9=0,圆心(3,﹣4),半径为:4.两个圆的圆心距为:=5,恰好是两个圆的半径和,所以两个圆外切.故选:C.【点评】本题考查两个圆的位置关系的判断,求出圆心距与半径和与差的关系是解题的关键.二、填空题:本大题共7小题,每小题4分,共28分11.若平面向量与满足:,,则与的夹角为.参考答案:【考点】9S:数量积表示两个向量的夹角.【分析】对两边平方,计算,代入夹角公式得出向量的夹角.【解答】解:=4,=1,∵,∴+2=7,∴=1,∴cos<>==,∴<>=.故答案为:.12.已知直线l通过直线3x+5y﹣4=0和直线6x﹣y+3=0的交点,且与直线2x+3y+5=0平行,则直线l的方程为.参考答案:6x+9y﹣7=0【考点】两条直线的交点坐标;直线的一般式方程与直线的平行关系.【分析】先求交点坐标,再假设方程,将交点坐标代入,即可得到直线l的方程.【解答】解:联立方程,可得解方程组可得∵直线l与直线2x+3y+5=0平行,∴可设方程为:2x+3y+c=0将代入,可得∴方程为:2x+3y=0即6x+9y﹣7=0故答案为:6x+9y﹣7=013.若二次函数的顶点为(,25),与轴交于两点,且这两点的横坐标的立方和为19,则这个二次函数的表达式为。参考答案:14.已知点在不等式组所表示的平面区域内运动,则的最小值为

.参考答案:15.

参考答案:16.已知是一个正项等比数列中连续的三项,则

;参考答案:417.三棱锥S﹣ABC的顶点都在同一球面上,且SA=AC=SB=BC=2,SC=4,则该球的体积为.参考答案:【考点】球的体积和表面积.【分析】通过已知条件,判断SC为球的直径,求出球的半径,即可求解球的体积.【解答】解:由题意,SA=AC=SB=BC=2,SC=4,所以AC2+SA2=SC2,BC2+SB2=SC2,SC是两个截面圆SAC与SCB的直径,所以SC是球的直径,球的半径为2,所以球的体积为.故答案为:.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.某种空气清洁剂在实验效果时,发现空气含剂量与时间之间存在函数关系,其变化的图像如下图所示。其中的曲线部分是某函数的图像(虚线部分为曲线的延展).图中表明,喷洒1小时后,空气含剂量最高,达到,以后逐步减小。(1)求出空气含剂量关于时间的函数表达式及定义域.(2)实验证明,当空气含剂量不低于时,空气清洁的效果最佳。求一次喷洒的“最佳效果”持续时间.参考答案:(1)当时,图像是一线段,得解析式为,将点坐标代入得,∴

对于函数将点坐标代入得.

∴,令得

∴函数的解析式为:

(2)当时,在中令得

当时,在中,令得:

,从而

,故最佳效果持续时间为小时.略19.已知函数,是公差为的等差数列,是公比为的等比数列.且,,,.(1)分别求数列、的通项公式;(2)已知数列满足:,求数列的通项公式.参考答案:(1),;(2).【分析】(1)根据题意分别列出关于、的方程,求出这两个量,然后分别求出数列、的首项,再利用等差数列和等比数列的通项公式可计算出数列、的通项公式;(2)令可得出的值,再令,由得出,两式相减可求出,于此得出数列的通项公式.【详解】(1)由题意得,,,解得,且,,,,,且,整理得,解得,,,由等比数列的通项公式可得;(2)由题意可知,对任意的,.当时,,;当时,由,可得,上述两式相减得,即,.不适合上式,因此,.【点睛】本题考查等差数列、等比数列通项公式的求解,以及利用作差法求数列通项,解题时要结合数列递推式的结构选择合适的方法求解,考查运算求解能力,属于中等题.20.已知点P是⊙O:x2+y2=9上的任意一点,过P作PD垂直x轴于D,动点Q满足.(Ⅰ)求动点Q的轨迹方程;(Ⅱ)动点Q的轨迹上存在两点M、N,关于点E(1,1)对称,求直线MN的方程.参考答案:【考点】直线与圆的位置关系.【专题】综合题;转化思想;综合法;直线与圆.【分析】(1)设Q(x,y),利用向量的坐标运算,结合在⊙O上即可得到点Q的轨迹方程;(2)对于存在性问题的解决方法,可假设存在.由条件(1,1)是线段MN的中点,利用中点坐标公式及椭圆的方程式,得到直线MN的斜率值,从而求得直线的方程.结果表明存在.【解答】解:(1)设P(x0,y0),Q(x,y),依题意,则点D的坐标为D(x0,0)∴=(x﹣x0,y),=(0,y0)又,∴x0=x,y0=y∵P在⊙O上,故x02+y02=9,∴∴点Q的轨迹方程为(2)假设椭圆上存在两点M(x1,y1),N(x2,y2),关于点E(1,1)对称,则E(1,1)是线段MN的中点,且有x1+x2=2,y1+y2=2M(x1,y1),N(x2,y2)代入椭圆,作差,整理可得kMN=﹣∴直线MN的方程为4x+9y﹣13=0将直线MN的方程代入椭圆方程检验得:52x2﹣104x﹣155=0则△>0有实根∴椭圆上存在两点M、N,关于点E(1,1)对称,此时直线MN的方程为4x+9y﹣13=0(14分)【点评】本题在向量与圆锥曲线交汇处命题,考查了向量的坐标运算、曲线方程的求法、椭圆的定义以及等价转化能力.21.已知数列{an}为等差数列,;数列{bn}是公比为的等比数列,,.(1)求数列{an},{bn}的通项公式;(2)求数列{an+bn}的前n项和Sn.参考答案:(1);(2)【分析】(1)将等差和等比数列的各项都化为首项和公差或公比的形式,从而求得基本量;根据等差和等比数列通项公式求得结果;(2)通过分组求和的方式,分别求解出等差和等比数列的前项和,加和得到结果.【详解】(1)设等差数列的首项为,公差为

解得:,

,,

(2)【点睛】本题考查等差数列、等比数列通项公式和前项和的求解,分组求和法求解数列的和的问题,属于基础题.22.在△ABC中,A,B,C成等差数列,a,b,c分别为A,B,C的对边,并且,,求a,b,c.参考答案:或.【分析】先算出,从而得到,也就是,结合面积得到,再根据余弦定理可得,故

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论